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ABSTRACT

i
- o

t -

The researcia effort detailed in the subsequent sections of this report, involved(the _'
;

• '._ basic objective of obtaining quantitative design:data concerning the characteristics of

"i aluminum honeycomb materials wher used _n high L/D ratio crushable energy absorb-
. !

ing capsules. 'Nine configurations of honeycomb energy absorbing capsules using alloy

5056 were evaluated in this study effort. The nine basic._onfigurations incorporated •

three (3) cross sectional shapes of high, medium, and low crush strength; each of which

was fabricated with cell axes oriented at angles of 0 °, 15° and 30 °, to the capsule longi-

i tuclinal axis. Particular characteristics which were studied included specific energy,

load on-Set rate, and rebound. Variations of these characteristics _were investigated under

controlled environmental conditions.

"_ The capsules were subjected to both static and dynamic loads, impact velocities from

5 i'hru 20 feet per second, and impact weights varying from 760 lbs. thru 3'/50 lbs. The

i environmental extremes under which the specimens were tested spanned the temperature

range trom -260°F thru room temperature up to +300°F, and a vacuum of 3 x 10-1 -'rOl_._

i "

The two phase program was conducted 6n a "pre_.ess of elimination" basis directed

:T

2_ toward identification of the capsule configurations which would maximize the desired

performance characteristics. All specimen types wMch crushed in the normal manner

of progressive ceil buckling, (for both the static and dynamic cases) exhibited the
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characteristic rectangular shape load/stroke curves representative of high efficiency

operation. Fluctuations in the average crush loads were as high as , 15,'_Jfor some

specimens with angular cell axes, butwere in the range of _*2%for the expanded hexagonal,

0 _ cell axis configurations.

Calculations of the specific energy in terms of ft. lbs./lb, indicate that the solid circular

section with the expanded hexagonal 0 ° cell axis provided the highes- value; however,

the thickness efficiency (stroke available in terms o_"total capsule length) is highest for
i

a solid circular section with cell axes at 15 °, although by only a small margin.

: A generalized statement regarding the effect that change in impact .velocity and Weight
5

•: have on the load onset rate is not considered adequate. Therefore, a study of the indivi-

":- dual plots of these values verses the various parameters, for the characteristics of

: interest will provide more meaningful information.

= One characteristic of particular interest indicates that during s,,bsequent impacts on

partla31y crushed capsules, all configurations yield a greater rebound value as the

uncrushed length of the capsule becomes shorter.

The effect of temperature variation on the specimens should be steadied in the light of
L

• '_ the various conditions to which they were subjected and the parameters against which

the values were plotted. It may be generally stated, however, that there is an increase

in average crush load of as much as 30% with a temperature decrea.se to -260°F and a

decrease in average crush load of as much as 35% at a temperature of +300°F.

The information presented in this report provides a substantial source of data regard-

ing the effects which changes in Specimen configuration, cell geometry, test conditions,

and enviromnent have on the characteristicsofcrushableenergyabsorbingmaterials.

c It can also provide guidelines in preparation of the specifications for capsule designs

":_ whilch will provide efficient and reliable operation as spacecr_t shock attenuators.
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SECTION I

INTRODUC TION

(

1.1 GENERA L

The requirements for soft landing space vehicle._ in a widely varying and unconventional

envir°nment have prompted the designers to consider many nonconventionaJ means of

shock _.ttennation. Those methods probably considered-most often involve the controlled

deformation of solid or plastic materials, althc,_h the compression of gas or fluid and'

the use of friction or the accelerationof a Iluid have also been studied for this use.

Potential advanLages can be shown for each of the methods considered; however, many .:

of the proposed concepts show inherent weaknesses in a comparative evaluation where

space system reliability is recognized as being ,7.1osely related to Simplicity and freedom .

from critical design and operating factors.

J

Consideration of factors such as potential puncture by meteorite impact, variation of

friction with environment, and maintenance of close tolerances ou fits and alignment

forother absorption methods led to the choice of crushable material in capsule form for

a first detailed effort to solve this type of shock attenuation requirement. Company funded

testingprograms and a literature survey on the subject comirmed our prediction that
J

aluminum honeycomb material offered-the most practical potential for further develop- " '_

•ment. Most of the surveyed tests were conducted in-the earth ambient atmosphere with

speculation as to the effect of cellu.lar entrapped air, impact velocity, and mass under

1-1

£,
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which a specimen is tested. The award to BPAD of Contract NAS 9-2074 involving the

"Study of Energy Absorbing Characteristics o( Crushable Aluminum Structures in a

Space Environment," has resulted in a significant step forward in understapding the

failure patterns, environmental effects, and application techniques for this material.

This f :_1 engineering report covers the information generated in both Phase I and

Phase II of a two-phase program which was a logical extension of earlier studies. The

program was designed specifically to investigate the behavior of previously selected

• "superior" materials when employed in "full scale" capsule sizes and tested in a

( vacuu._n environment in combination with those environmental extremes Which are:anti-

"- cipated to have substgntial influence on performance. Farther exploration is needed

regarding the variati_ons in honeycomb st."uctural capability which may occur as a result

: of exposure to the tull range of space environments. It is expected, however, that space: :

craft laa(h_ _ear design efforts may proceed on a more sound basis with the data obtained

from this research effort.

1.2 OBJEC TIVE

The basic objective of this program was to obtain quan_.itative design data concerning

thecharacteristicsofcertainsel_ctedmaterialswhen used inhighlength-to-diameter"

(L/D) ratiocrushableenergyabsorbingcapsules such as would be suitablefor use in

spacecraftalightinggear shock attenuators.

The idezlized characteristics which are generally desired in such shock attenuating

capsulesare listedhere: ':
5

: i. Nigh specific energy (ft. lbs. per lb. of capsule weight)

: 2. Moderate load on-set rate (lb. per second) consistent with

_[ vehicle mass and peak acceleration load rate limits.

_: I-2
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3. Minimum rebound characteristics.

4. Minim,an variation ill characteristics with environmental extremes.

5. Repeatability of characteristics.

1.3 SCOPE OF TESTS

The program efforts were directed toward identification of the honeycomb cell orienta-
s

tion and geometry and capsule configuration which would provide an optimized combina-

tion of the desired characteristics as defined un('er Objective, paragraph 1.2. _- :

The capsule property variations were studied using a special test fixture (Figure

3-4) incorporating a viewing window with capability for a temperature spectrum ranging

from a high of +300°F thru room temperature down to a low_of -260°F, to satisfy the

maximum expected temperature variation for a hmar mission. All testing of the full-

length test articles was conducted with specimens exposed to an initial ambient atmos-

pheric pressure of 3X10-1 TORR (300 microns). This vacuum environment was not

meant to simulate the hard vacuum of outer space, but only to eliminate the effect which

cellular entrapped air might exert on the capsule reactions. The characteristics of

interest were studied under both static and dynamic loading' conditions, and the effect

of impact velocity and mass variation was observed specifically through the following

ranges.

1. With drop weight remaining constant at 1920 lbs. - impact velocities

were varied, using 5, 10, 14, and 20 feet per second.

2. With impact velocity remaining constant at 10 feet per second the drop
S"

;:,eight was varied as follows: 760 lbs., 1920 lbs., 2850 lbs., and 3750 lbs.

J

The program was accomplished on a "process of elimination" basis. The nine

full-length capsule configurations used in the initial part of the program

1-3
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were determined by the static testing of short, 6-inch length, prrproduction control spec-

imens under ambient temperature and atmospheric pressure. Those control spec-

cimen designs exhibiting satisfactory pctential in regard to the basic specimen criteria

were then selected for fabrication of m_ltiplc quantities of that configuration in full-

length specimens. Increasingly sPvere environmental condiLions were imposed on those

full-length specimens. The original nine configurations of Phase IA were reduced to

four configurations for Pha._.e IB and subsequently to the two configurations exhibiting

the greater potential regarding optimal combinations of the desired performance charac-

teristics. In Phase IT these specimens were subjected to the full range of temperatures

as shown below.

No. of Specimen
Configurations Vacuum Temperature

Phase IA 9 3x10 -1 TORR Room Temperature

Phase IB 4 3x10-1 TORR - 260 ° F

Phase II 2 3x10 -1• TORR +300:F, _ °+_50 F,

-150°F, -2C0°F

Details of the test program are outlined in Sections VI, VII and VIII.

! :
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SECTION II

TEST SPECIMENS

2.1 GENERAL

The basiccriteriafor definingthe testspecimens was establishedwiththefollowing

L- ";

guidelines.

1. Aluminum alloyhoneycomb capsulesofthree(3)crush strengthlevels

}
(high,moderate,and low),each ofwhich would be fabricatedwiththree

(3)cellaxisorientations,making a totalofnine (9)config_arations.

(ReferenceFigure 2-I A _ B).

= 2. CapsuleconfigurationsWere desig],edsuchthatcross-sectionalarea was

consistentwithcrush strengthleveltoyielda crushingloadofapproxi-

= mately 5500 pounds for all capsules.

: 3. Capsule length was allowed to vary slightly to insure a minimum stroke

:. length of 40 inches.

The parameter Variations offered characteristics which would allow some trade-off

studies or compromise when considering the energy absorbing capacity, elastic defor-

mation per unit load, peak loads to initiate crushing action, and load on-set rates:

A landing gear strut outer cylinder bore of 6.25 to 6.50 inches in combination with a

6.00 outside diameter piston was assumed in selecting the size of the shock attenuating

capsules.

3-1
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_ B. Cell Angle Variations
0

_5 Figure 2-I. Basic Specimen Configurations
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The three (3) crush strength levels were planned to span the range from 1490 PSI.

(high) down to 180 PSI (low). These upper and lower limits of crush stlength level

lend themselves best to "internal" type capsules, designated as those housed inside

the strut outer cylinder and guided on the outside diameter; (Figure 2-2).

The high strength capsule (1400 PSI) requiring a relatively small cross-sectional area

was designated as an annulus section to gain a reasonable L/r; column ratio, and the

outside diameter was limited by cell size and practical annulus width (Figure 2-3).

The low strength capsule (180 PSI) requires a solid circular zross-s :ction of a diameter

somewhat less than the assumed outer cylinder bore to develop the reqmred load:

(Figure 2-3).

The moderate crush strength level (700 PSI) selected permits fabricatior as either an

"internal" or "external" capsule configuration in the chosen shock attenuator size range.

The "external" configuration placed around a strut piston outside diameter offers cer-

tain capsule replacement advantages for reusable gear systems. To gain experience

with this type capsule, guided on the inside diameter, the moderate strength capsule

was designed in annular cross-section in a sizc consistent with external mounting

(Figure 2-3).

A key has been established to readily iden.tify the basic capsule configurations as they are

discussed and as data plots are made throughout this report. This key is explained in

the following table, with a circular symbol indicating the cross-sectional shape and a

number identifying the cell axis orientation, e.g. @ indicates "internal annular (small)"

and 15 indicates angular cell axis orientation with respect to vertical axis."

2-3

J. -- __I in ,i L_ J _I_ III i

1965021582-020





Nominal
Configuration Crush Stress Nominal Size Approx, Cell Size Cell Orientation

No. Type (PSI) (Inches) (Inches) /__respect to Ia -y
capsule verti-

] cal axis.
I

A I 1400 3.00 O.D. 1/1_ x 1/8 15°2.00 I.D. "_

1 B 1400 3.00 O.D. 1/16 x 1/8 30 °
_: (Internal 2.00 I.D.

Annular-

" Small)

C 1400 3.00 O.D, 3/32 x 3/!6 0 °
2.00 I.D. (1/16)

A 405 (700) 6.90 O.D. 3/32 x 3/16 15° _ ,
(6.80 O.D.) (1/16 x 1/8)

5.50 I.D.
(6.00 I.D.)

2 B 370 (700) 7.00 O.D. 3/32 x 3/16 30 °
(External (6.80 O.D.) (1/16 x 1/8)
Annular- 5.50 I.D.

Large] (6.00 I.D.)

C 325 (700) 7.]90.D. "/32 x 3/16 0 °
(6.80 O.D.) (I/16)

5.50 I.D. -

(6.00 I.D,)

A 230 (180) 5.50 Dia. 1/8 x I/4 15°
(6.25 Dia.) (J/16 x I/8)

3 B 200 (180) 5.90 Dia. 1/8 x I/4 30 ° [_
; (CircuI tr (6.25Dia.) (1/16 x 1/8)
_ Solid)

C 180 6.25 Dia. 1/8 oi' 1/16 Half 0 °
; Hex.

; NOTES: Intensive research and development efforts by the capsule supplier fell short

in some cases of meeting the original stringent requirements for capsules with satis-

factory crush characteristics. Negotiated adjustments, coordinated with NASA-MSC (Cont.)

-! ii ,-,m i ill ii p

Figure 2-3. Table of Finalized Basic Specification_ for the Specimen Configurations 1

2-5

-i

- -- II,lllii _ . _:=___ _ -- .__ - I|'ll II I _ III .... illlt I I_1111 '_-- -- _ .. q ,!q_-

1965021582-022



which would still permit at_inment of the basic program objectives were incorporated as

pre_iously indicate.a, with the original desired requirements being shown in parentheses.

Mp_.crials:

(a) 5056-H39 Aluminum Alloy foil.

(b) Adhesives were not spec;ified in detail. The specimen supplier was advised that

the environment which t_,e Specimens would encounter inclu6ed both vacuum and extreme

temperatures of +300°F _,d -260°F. The supplier elected to use adhesives which are

genera:ly descld.bed by specificatien MIL-A-_5090D, Type I. Those adhesives used are

spectically imted under the description,of the several configuraUons.

; (c) Tape Wrapping - No outer cove_'ing w_s spedffied/or the specimens. On certain

- configurations the specimen supplier elected to wrap them with Minnesota Mining and

= Mfg. Cos.' No. 870 glass filament tape. This was added primarily to prevent peeling of

the outer cells during crushing action and secondarily to stabilize the cylinder wails as

well as to prevent expansion of the capsules without significantly affecting the crusl,

strength. Those capsules incorporating this tape are defilled under the detail description

of individua! configurations (Figures 2-4 thru 2-12).

Crush Load: The nominal crush stress provides an average crush load of 5500 lbs. for

all configurations. The average crush load for all specimens of a particulzr configuration

was specified to fall within _5%of the group average for that configuration with the further

stipulation that this-average load should not be above a maximum of 5900 lbs. nor below a

minimum of 5100 lbs.

Capsule Length: The uncrushed length was specified as that length which will provide a
': -.00

-rushing stroke capability of 40.00 _ inches and the total length was not to excee_160 inches.

Figure 2- 3. Table of Finalized Basic Specifications for the Specimen Configurations (Cont.)
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-- KEY

_ [-_---_ = "internal annular (small)"" cell axis _ -_ --15:

- _ = "internal annular (small)"" cell axis (_ --_;_ .... 30"

-- i_--_____,_,i = "internal annular {small)"" cell axis Vertical (0 °) :

- t'-_ = "external annular (large)"" cell axis _- -')'_15 °

L____} = "external armular (large)"" • cell axis _ -_/_"--30

; _ = "external annular (large)"" cell axis Vertical (0 °)

_= "circular solid"; cell axis _ '_'_-_-15"-

= _ = "circular so!id": cell axis @ _£_._30 _

---_= "circular solid": cell axis Vertical (0 _)

Further reference for the various configurations may be seen in Figure 2-3, "Table

of Finalized Basic Specifications for the Specimen Configurations", pictorially in

Figure 2-2, "Test Specir_en Configuration Summary", and in the individual "Specimen

Configuration" Figures numbered 2-4 thru 2-12.
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Specimen (Internal Annular - Small)

Key =

2 _

i

_ _.

_ . 2, ,

Pre- Production Full Length
; Control Specimen Test Specimen

(Bendix Part No. SPX-165A) _ - (Bendix Part No. SPX-168A)

Cross- Sectional
View Constructic-1 D_ta/ls

Co,'e Type ..... 15-0-15 'Crosscore'
Material ..... Aluminmn Alloy (5056-H39)

Foil Config:
Corrugated - 1/16' Hexagonal (1/8" Cell) .0026" t
Interleaf - Flat .0009" t

Adhesive -. Reichold Epotuf Code #SF 5473-1
Wr'___ping- 3 M Glr.ss filament _pe No. 870
Nominal Dimensions (in.) SPX- 165A SPX- 168A

Outside Diameter ,: 3.00_ .125 3.00 ± .125
Inside Diameter 2.00 :_ .125 2.00 :_ .125 "_
Area (Nominal) 3.93 in. 2 3.93 in. 2
Length 6,00 _ .125 *52.50

_. * Len_;tt_ef "TEST specimens was- specified as that reqmred to give
40.00" +.-_ stroke but max, length was not to exceed 60.00".

-' Average crush strength = 1400 PSI (This stress with a specimen of
nominal _mensions gives a crush load of 5500 lbs.)

Figure 2-4. Specimen Configuration IA
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: Specimen (Internal Annular - Small)

"- Key =_

-?,

Z

"_ Pre- Production Full Length
i Control Specimen Test Specimen

(Bendix Part No. SPX-165B) (Bendix Part No. SPX-IC8_)

%

Cross-Sectional Construcdon Details
' _ View

, Core Type - - - 30-0-30 'Cross Core'
Ma'.erial - - - Aluminum Alloy (5056-_ _39)

: Foil Config:
Corrugated - 1116" Hexagonal (I/8" cell) .0026"t
Interleaf- Flat .0009'_t

Adhesive - - - Reichold Epotuf Code _.SF5473-1
Wrapping - - - 3M Glass filament tape No. 670
Nomil.al Dimensions (in,) SPX- 165B SPX- 168B

Outside Diameter 3.00 e .125 3.00 ± .IP_
InsideDiameter 2.00± .125 2.00± .125

Area (Nominal) 3.93in.2 3.93in.2
Length 6.00:t.125 * 52.50

Average crush strength- - - 1400P._ (Thisstresswitha specimen ofnominal

dimensionsprovidesa crush loadof 5500Ibs.) -.00
• Lengthof 'TEST' specimen isspecifiedas thatrequiredtogive40.00 +.50
strokebut maximum lengthisnot toexceed 60.00".

Figure 2-5. Specimen ConIiguration1B
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Specimen (Internal Annular - Small)

Key=

• !

= 2'

- |
Pre-Prodvction Full Length

Control Specimen Test Specimen

J • (Bendix Pa.'-t No. SPX-!65C) (Bendix Part No. SPX-168C)

//

.___

Cross-Sectional Construction Details
View

Core Type - - - 'Tubecore'
Material .... Almninum Alloy (&'I56-H39)

Foil Config:
Corrugated - 3/32" Sine Wave .0026"t
Interleaf - Flat ( 2 tl'Acknesses) .0026"t (each)

Adhesive - - - Reichold Epotuf Code #SF5473-1
Wrapning - - - 3M Glass fil:unent tape No. 870
Nominal Dimensions (in.) SPX- 165C SPX- 168C

Outside Diameter 3.00 ± .125 3.00 _: .125
Inside Diameter 2.00 :_ .126 2.00 ± .125
Area (Nominal) ° 3.93 in. 2 3.93 in. 2
Length 6.00 ± .126 * 66.00

Average crush strength - - - 1400 PSI (Tlus stress with a specimen of nominal

dimenbtons provides a crush load of 5500 lbs.) -.00
• Leng+h of 'TEST' specimen is specified as that required to give 40.00 +.60
stroke but maximum length is not to exceed 60.00".

Figure 2-6. Specimen Configuration 1C
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-" Specimen (External Annular - Large)

_ Key =

J- - • ,,_ ap_i.

:

Pre-Production FullLength
Control Specimen c Test Specimen

(Bendix Part No. SPX-164A) (Bendix Part No. SPX-167A)

-!

I i Cross-,_ctiona]. : Construction Details
: View

! - 7 Core Type - - - 15-0-15 'Crosscore' -

i ! Material - - - Aluminum Alloy (5056-H39)Foil Cenfig:
rorrug-ated- 3/32" Hexagonal(3/16"ceil).0014"t
Interleaf - Flat .0009"t _'-

i Adhesive - - - ReicholdEpohd Code # SF5473-I
Wrapping - - - 3M Glass filament tape No. 870
Nominal Dimensions (in.) SPX- 164A SPX- 167A

Otttside Diameter 6.90 ± .125 6.90 ± .125

• InsideDiameter 5.50± .125 5.50± .1_5
Area (Nominal) 13.63 in. 2 13.63 in. _

" Length 6.00, .125 * 51.00
Averag{_crush strength- - - 405 PSI (Thisstresswitha specimen nominal
dimensions provides a crush load of 5500 lbs.)

• Length of 'TEST' specimen is specified as that required to give 40.00 ::_ 0
,J strokeb_]tmaximum lengthIsnot toexceed 60.00".

Figu_'e 2-7.-, Specimen, Configuration ZA
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Specimen (ExternalAnnular - Large)

Key =

Ir

Pre-Production Full Length _,
'_ Control 5_ecimen Test Specimen

} (Bendix Part No. SPX-164B) (Bendix Part No. SPX-167B).

r

Cross- Secdona_ Construction Details
View

Core Type - - - 30-0-30 'Crosscore'
_. Material - - - Alun.inurn Alloy (5056-H39)

• FoilConfig:
Corrugated- 3/32"Hexagonal (3/16"cell).0014"t
Interleaf-Flat .0009"t

Adhesive - - - ReicholdEpotufCode #SF 5473-1
Wrapph,g .... 3M C_assfilamenttapeNo. 8'10
Nominal Dimenrions (in.) SPX- 164B ,"'_- 167B

Outsid_ Diameter 7.00 ± .125 r'} ± .125
InsideDiameter 5.50 _ .125 :_.125

Area (Nominal) 14.73in.2 14 3 in.2
Length 5.00± .125 * 51.C0"

_verage crush strength- - - 370 PSI (Thisstresswitha specimen of nominal
_ - dimensionsprovides- crush loadof 5500Ibs.)

_= * Length of 'TEST' specimen is Specified as that required to give 40.00 _-:_8
stroke but maximum length is not to exceed 60.00".

Figure 2-8. Specimen Configuration2B
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Specimen (External Annular - Large)

• : Key =
4

II

"t _ 't

t :

i Pre-ProduCtion Full Length
• _ Control Specimen Test Specimen
- _ (Bendix Part No. SPX-164C) _Bendix Part No. SPX-167C)

• _ >

, )
._ © ..

%

j
, Cross- Sectional Construction Details

; . . View

1
!_ Core Type - - - 'Tubecore'

! Materi:fl - - - Aluminum Alloy (5056-H39)
:I Foil Config:
• : Corrugated - 3/32" Sinewave .0014"t

Interleaf - Flat .0014"t
-Adhesive ° - -3M EC-1386

Wrapping ° ° 3M Glass filament tape No. 870
Nominal Dimensions (in.) SPX-164C SPX-167C

Outside Diameter 7.19 ± .125 7.19 _ .125
Inside Diameter 5.50 _ .125 5.50 ± .125
Area (Nominal) 16.82 in. 2 16.82 in. 2
Length 6.00 ± .125 * 50.50

Average crush strength - - - 330 PSI ('rhlq ,qhess with a specimen of nominal

:' dimensions provides a crush load of 5_00 Lbs.) - 00
_: * Length of 'TEST' specimen is specified as that required to give 40.00 +:50

_ stroke but maximum length is not to exceed 60.00".

$'r

! Figure 2-9. Specimen Configuration 2C :_
_r
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Specimen (Circular Solid)

Key =

Pre-Production Full Length

Control Speci._neh : Test Specimen :
(Bend.x Part No. SPX- 163A) (Bendix Part No. SPX- I _6A_

i,

\
.

Cross-SectionsI Construction Details
View

Core type- - - 15- 0- 15'Crosscore'
Material - - - Aluminum Alloy (5056oH39}

Foil Config:
Corrugated - 1/8" Hexagonal (1/4'; cell) .0014"
Interleaf- Flat .0009"t

Adhesive - - - Reichold Epotuf Code #SF5473-1
Wrapping - - - 3M Glass filament tape No. 870
Nominal Dinensions (in.) SPX-163A SPX-166A

Outside Diameter 5.50 ± .125 5.50 :_ .125
Area (Nominal) 23.76 in.2 23.76 in.2

/ Length 6.00 ± .125 * 50.00
Average crush strength- - - 230 PSI (Thisstresswitha specimen of nominal
dimensionsprovidesa crush loadof 5500 Lbs.)
• Length of 'TEST' specimen isspecifiedas thatrequiredtogive40.004-:_8

strokebut maximum lengthis notto exceed 60.00".

_% Figure2-I0. Specimen Configuration3A
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Specimen (Circular Solid)

Key :
.~

@

Pre- Production Full Length
Control Specimen Test Specimen

(Bendix Part No. SPX-163B) (Bendix Part No. SPX-166B)

_..,
,_.-_.. .:: ......( \----/ ,___' ___ /'

Cross-Sectional ConstractionDetails
Viev,

Core Type - - - 30-0-.30'C1osscore'
Material.... Aluminum Alloy(5056-H39)
FoilCo,Jig:

Corrugated- 1/8"Heaagonal(1/4"Cell) .0014"t
Interleak- Flat .0f)09"t

Adhesive .... Reichold Epotuf Code #SF5473-I
Wrapping - - - 3M Glass filament tage Nu. 870
Nominal Dimensions (in.) SPX- 163B SPX- 166B

Outside Diameter 5.90 • .125 5.90 _ .125
Area (Nominal) 27.34 in.2 27.34 in, 2
Length 6.00 i .125 * 50,00

Average crush.strength - - - 200 PSI (This stress with a specimen of nominal
dimensions provides a crush load oi 5500 Lbs,)
• Leng"_ of 'TEST' specimen is specified as that required to give 40,00 -.00+.50
strokebut maximum leltgthisnotto exceed 60.00".

Figure 2-11. Specimen Configuration 3B
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Specimen (Circular Solid)

}'ey :

Pre-Production Full Length
Control Specimen Test Speclmen

(Bendix Part No. SPX-163C) (Bendix Part No. SPX-166C)

Cross-Sectional Construction. Details
View

Core Type - - -Expanded Honeycomb
Material - - - Aluminum Alloy (5056 - H39)
Foil Conlig: Expanded 1/16" Hexagonal (1/8" Cell) .0009"t
Core Adhesive - - - Reichold Epot_ Code #SF5473-1
Full Len_h Specimens (SPX-166C) were fabricated from two sections joined at the
center usir.,: a perforated aluminum plate of .012" thicknes_ and Shell Epon 931
Adhesive.
Nominal Dimensions (In.) SPX- 163C SPX- 166C

Outside Diameter 6.25 ± .125 6,25 • ,125
Area (Nominal) 30.68 in.2 3068 in.2
Length 6.00 :_ .125 52.00

Average crush strength - - - 180 PSI (This 3tress with a specimen of nominal
dimensions provides a crush load of 5500 Lbs.)

Length of "TEST' specimen 13 specified as that required to give 40.00 +:00

!" stroke but maximum length is not to exceed _0.00".

1 Figure 2-12. Specimen Configuration 3C
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2.2 MA TE RIA L

The selectien of material to be used in fabricating the several test articles w.s an

important consideration for this program. For optimum landing gear '_,slg, con-

- sistency in shock attenuator performance over the complet, _ operati_ g spectrum is

desired. A honeycomb foil alloy that will exhibit high strength and maintain this

strength level as consistently as possible over the temperature range was the uought

after goal. Loss of strength at elevated temperature requirera extra gear stroke com-

promises to insure adequate energy absorption capacity, and increased strength at

cryogenic temperatures may adversely affect vehicle landing stability. The aluminum

foils used almost exclusively in honeycomb applications at the time this project was

initiated included alloys of 3003, 5052, and 5056, some of which could be obtained in

various strain-hardened and stabilized tempers. To obtain the added temperature

stability and higher strength level of a heat treated alloy for this important study,

this contractor originally selected and requested, through the major honeycomb and

foil producers, that the specimens be furnished in a 2024 aluminum alloy. The foil

and honeycomb fabricators advised at that time that the foil processing state-of-the-

art had not yet progressed to a point where this alloy coald be furnished in the neces-

sary foil thickn. . Since the primary foil alloy selected was not avai!abie, it be-

came necessary to select el' alternate in the form of 5056-H39 for this program. This

strain-hardened and stabilized alloy offers superior propelties, relating tc crush strengd_.

o"er the temperature spectrum of -260°F to +300°F provided the oxposure to +300 F does

not exceed approximately 10 minutes. Comparative data on the pertinent mechanical pro-

i perties (Modulus of Elasticity "rod Tensile Yield Streagth) cl the three alloys considered

NOTE: Volume demand of a large aircraft program has subsequentiy provided the impe-

tus to extend development of the foil processing equipment and a number of 2924 foil

thicknesses are currently available.
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2re shown in Figurer 2-13 and2-14.

Comments concerning the adhesives used in fabricating the specimens and the tape

wrapped covering .-.n certain specimens may be found in *he notes following the finalized

basic specifications for the specimen configurations (Figure 2-3).

2.3 SPECIMEN PROCUREMENT

The original basic specifications (Figure 2-3L defining the test specimens, were supplied

to three recognized manufacturers of quality aluminum honeycomb, and their proposals

were requested. Fun consideration was given to all responses from these fabricators

and largely on the baFis of cost the following vendor was selected:

Hexcel Products Inc.

2332 Fourth Street

Berkeley, Califorma

._- The first task of the specimen vendor, following initiation of orders for 5056-H39 foil,

was to supply "core co,ffig_lration samples" which would demonstrate their capa-

bi!ities in providing "he specimens of the specified cross sectional shapes and cell

angle orientations. These sample specimens were made from an alloy foil, available

in t.heir plant, which possessedstrength characteristics similar to those specified.

Figure 2-__5showsthe result of this efforf. These specimens were not tested by Bendix

to determine the crush _.oads, since our interest here was primarily in quality of fabri-

cation techniques and also the presently available foil would almost certainly have re-

sulted in a higher crush load than desired.

Following .the visual evaluation of these core configuration samples by Bendix and NASA -

MSC personnel and the procurement of the specified aluramum alloy foil (5056-H39), the

:
vendor embarked on the second task of producing "pre-production control specimens"
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(Figure 2-2). The control specimens which were ( 6 )six-inch length minia-

ture versions of the future full length (approx. 50-56 inches) test specimens were to be

indicative in every manner (except that affected by L/D) of those characteristics to be

obtained with the final specimen configurations. This, of course, included material,

foil thickness, adhesive, cell size and orientation, cross-sectional area. outer covering_

(if any),andthecrush strength. After the vender had demonstrated to his satisfaction that

he could construct such a "pre-production control specimen" in accordance with the speci-

fications, four specimens of each configuration were supplied to Bendix where two of each

configuration were evaluated in static crush tests. Visual 9bservation of test specimen

quality and successful demonstration of crush loaos falling wilhin the specified limits

led to a design release for each individual configuration. This permitted the vendor to

initiate quantity fabrication of that particul_, r configuration in the necessary iength to

produce a forty (40) inch stroke. Photographs of the pre-production control specimens

_ and the test results Gbtained are shown in Section VII.

"After an intensive eleven (11) month development effort, involving many trial fabrication

techniques and several cc,nferences between Bendix, NASA-MSC, and Hexcel personnel

ultLmately leading to basic specification revisions (see Figure 2-3) and extension of thew

contract completion date, the design release was provided for the last of the nine (9)

configurations. These minor adjustments in the basic specifications still permitted attain-

ment of the basic program objectives. It is apparent that the state of the art in manu-

facturing aluminum honeycomb capsules was less advanced than originally believed when

the project was initiated.
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Adverse crush characteristics experienced during the development period were concerned

with:

1. Control of adhesive quantity which varied with crush strength.

2. Large load fluctuations particularly in cross-core with angular cells.

3. Failure of splices when attempting to make long capsules from severalL

sections.

4. Stroke efficiencies were less than desired.

5. Inabili_J to meet the specified average crush loads & cross-sectionai

area adjustments because of the limited number of foil thicknesses

available.

Some additional comments about specimen characteristics may be ;ound in the, conclu-

sions. For those who may be interested in the development cycles of the individual

Specimen Config'ui,_tions, Hexc=l's Final Materials Report is included as Addendum

No. 2 to this report' and is listed in the References (Section XI).

The specimen vendor ultimately provided ten (10) full-length specimens of the nine
!

'_ (9) configurations (and otimr development type specimens) for the Phase 1 Test Pro-

grmn. Subsequent evaluation resulted in elimination of certain test specimens. The-

final Phase II tests involved procurement of 70 _pecimens (33 each of two configurations

and 2 each ef two other configurations) making a total of 160 full-length specimen's for

the entire program.

i

': 2.4 CONFIGURATION DETAILS

A general description of the several specimen configurations utiliz'ed fn this research
i

,_ effort is summarized in Table form (Figure 2-2) and all pertinent details for each of the

_: corfigurations are provided in Figures 2-4 thru 2-12.

:_:

J
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SECTION lh

'?EST EQUIFMENT

3.1 GENEIL_L

The test equipment used in this project is located in Bendix Products Aerospace Divi-

sion's Energy Absorption Test Laboratory. All special fixturing and equipment was

designed by BPAD personnel, and in large measure, fabricated within our own manu-

"- facturing facilitieS. Personnel from the Corning Glass Works and the W. -S. Shamban

-7 Company were utilized as technical consultants on the special viewing window and the

- various seals used throughout the primary test fixture.

" The development of the special fixturing for testing the crushable material capsules

- uhder extreme environmental conditions has resulted in a facility with unique

-: capabilities. However, the designers, thru observation and use of the unit, now recog-

nize that further improvements may be incorporated to enhance the efficiency and reli-

ability under these conditions.

3.2 PRE-PRODUCTION CONTROL SPECIMEN TEST EQUIPMENT

: An Instron materials test machine was used to "slow crush" the six-inch long pre-pro-

duction control specimens of each configuration to determine their load stroke charac-

teristics. Figure 3-1 is a schematic of the Instron machiJ,e used and Figure 3-2 shows

the machine set up to "slow crush" a test specimen.

The test specimen was placed directly on the compression load cell and the load applied

by lowering the Cross head at a selected rate. The cross head is powered by an electric

motor, coupled to a gear box, which drives t:,e cross head lead screws. The head speed

can be varied from a minimum of 0.02 inches per minute to a maximtuu of 20 inches per

minute. The machine has a maximum compression load capability of 16,0f:,0 lbs. The

crush load was recorded directly from the load cell by the direct reading recorder. The

'l
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Figure 3-1. Schematic of Instron Materials Test Machine
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Figure 3-2. -Pre-Production Test Specimen {n Instron Test Machine
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paper speed of the recorder may _e varied. In the tests conducted the cross head speed used

was 1/2 inch per minute. The paper speed was 10 inches per minute until the load be-

came constant, and one inch per minute during the remainder of the cr,'_h stroke.

3.2.1 Test Fixture: (Bendix Dwg. No. SPX-170 Chg. D ) Unit Assy. Crushable

Material Energy Absorber. Figure 3-3

Full length specimens were tested in a spe,.ially designed test fixture positioned below

a small drop test tower as shown in Figure 3-4. The al,,.uninum honeycomb capsu!es

were housed in the evacuated cylinder and subjected to temperatures ranging from +300 °F

to -260°F. Dynamic testing was conducted by dropping the rig mass through a selected

distance onto thp fixture inner cylinder. The weight of the fig mass was changed for

certain tests to study the effect of impact mass variation on the honeycomb energy absorb-

ing characteristics. This was accomplished by adding or _ubtracting lead shot from the

drop 1,ig. For static testing, i.e. "slow cz-._sbJng", two hydraulic actuators were attacl,ed

to the drop rig and the rig pulled down at a controlled rate. The rig could be stopped at

any desired point of the crush stroke to study spring rate, load drop off at fixed stroke

position, etc. Crushing characteristics were recorded using an X-_ plotter for static

tests and an oscillograph for dynamic tests. Observations and photographs (including

standard and high speed movies) of [he crushing action were made through the lal ge win-.

dow in the fixture outer cylinder.

Figure 3-3 shows the details of the test fixture and Figure 3-5 shows a general view of

the test fixture components. In this program it was required to accurately determine

the static arid dynamic characteristics of the various honeycomb specimens. It was there-

i fore important to isolate (a_ much as possible) the dynamic effects of the test fixture from

the recorded test data.
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Figure'3-4. _ Test Setup
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This was accomplished by carrying the outer rylinder loads directly to the floor through

"fins" welded to the outer cylinder. The bottom of the outer cylinder was cut away and a

moving sleeve assembly, attached to the outer cylinder by : _etal bellows to provide a

vacuum seal, carried the capsule and inner cylinder loads into a load cell which was

positioned between the sleeve and the floor. A dynamic analysis of the fixture using

an analog computer was madeto determine the effect of the rig dynamics on the load

cell readings. This analysis is described fully in Section IV of this report,

The f_.xture was designed so that set up time would be mioimized for the three basic

capsule configurations when changing from one configxlration to another. The fix-

Lure, as ,:hown i_ E_gure 3-3, can be used to test both the large annular (external) spec-

imens (SPX-167) and the small annular (internal) specimens (SPX-168). The large annu-

lar specimens _,ere gn:ided on their inside diameter by the support tube outside diameter

and were crushed by the outer piston, as shown in Figure 3-6A. The small annular spec-

imens were guided on their outside diameter by the support tube inside dia.neter and v

were crushed by the irmer piston, as shown in Figure 3-6B. The support tube was cut

] away in the area of the observation window so that the crushing characteristics of the

small annular specimens could be observed. For testing the solid cross-section spec-

imens (SPX-t96), the support tube was removed and a large piston head was attached

to the inner piston. The specimen was guided on its outside diameter by the outer cyl-

inder inside diameter, as shown in Figure 3-6_C.

The fixture was evacuated to a pressure of 3x10" 1 TORR or less by a positive displace-

ment o;1 diffusion pump connected to the lower end of the outer cylinder. "

A hard compound insulating material on the outer piston head provides a moving beari: _.

The dynamic va,zuum seal also serves the purpose of the fixed bearing in the outer cylin-
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der. The dynamic vacuum seal is a "Vee" type as shown in Figure 3-7. An

outer nut retains the seal assembly in place in the outer cylinder, and a nut, inside

the seal retaining nut, allows the pressure on the seal to be adjusted. Figure 3-7

configuration (1) shows the seal assembly used for most room temperature to +300_F

testing. This seal design will hold a vacuum of 3xI0 -1 2Y)RR or less with the seal tem-

peratures up to +300°F. Figure 3-7, configuration (2) shows the seal assembly used

for most of the testing at -150°F and -260°F. Although this seal design will hold a

vacuum at -260 ¢F, it will only do se if the vacuum is initially obtained before the seal

reaches -20°F. Due to this problem, it was necessary to use the following procedure in

obtaining the required low temperalxlre test conditions. Initially t',,e outer cylinder and

specimen were cooled down to -100°F with the piston and seal assembly removed.

The liquid nitrogen supply into the outer cylinder was then shut _ff and the piston and

dynamic seal assembled to the outer cylinder. The vacuum pinup was then started and

a vacuum of 3x10 -1 TORR pulled in the fixture before the dynamic seal reached -20°F.

' The fixture and specimen temperature was then reduced to -260°F and the specimen

crushed. Later in the program, the seal assembly was changed to the configuration

'- shown in Fioo_re 3-8. This assembly gives a longer bearing length and uses a teflon

; ring as a scraper. The same procedure as described above is required to attain a

seal at cryogenic temperature. This seal assembly Was used during testin_ at +300: F

toward the end of the program and performed sahsfactorily. A brief discussio,_ of the

dynamic seal development is :.ncluded at the end of this section.

All materials used in the con3truction of the fixture were 6061 aluminum alloy except

for the outer piston which was hard coated 2024-T4 aluminun_ alloy. Aluminum alloy

was selected for us e in this f Lxture design for its high heat transfer properties which make

: 3-11
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it poss;Dle to rapidly heat or cool the fixture for the e_'treme enviromnent tests. The

static seals for the base plate and seal retaining nut were Kel-F. The outer piston cap

seal was silicone rubber. Jnstr_lmentation outlets in the upper end of the outer piston

were sealed with teflon and in the base plate by lava and teflon seals, The vacuum gage,

vacuum line, and gas inlet and exhaust lines were wet assembled inte standard pipe

threads and coated with vacuum gr_aseo Cryogenic vacuum valves were used to close

off the gas inlet a:,,-I exhaust ports prior to pulling a vacuum. The observation window was

made from Corm_g Glass Work's annealed borosilicate glass (No. 7740) and the window

seal of thin sheet virgin tef_.on. The differential expansion between the glass and the alu-

minum frame was used to provide a high seal pressure (4,490 psi) at -200°F and a low

seal pressure (500 psi) at +300°F. The low seal pressure at +3O0°F prevents the teflon

from"cold flowing" out of position. The gradual increase in seai pressure as the fix-

•_ ture is cooled down maintains the vacuum seal obtained at room temperature. It _hould

be noted that the window seal will not seal at cryogenic temperature ff a good seal is

not first obtained at room temperature. The higi_ seal loads at -260_'F coupled with

the unequal cooling and reheating of the fixture caused the window frame to twist excessive-

ly. This resulted in the breaking of several windows and cracking of the ,_indow frame

corner we_ds. This problem was overcome by stiffening the vcinc:ow frame by welding

on three horizoutal bars as shown in Figures 3-4 and 3-9.

Marshall Eclipse compound A 5-105 was used as insulation on the piston heads, to reduce

the heat transier to the dynamic vacuum seal and outer piston, and below the lower load

cell to reduce the temperature gradient across the load cell pins.

3.3 HIGH TEMPERATURE TESTING

,, For conducting tests at ,150°F and +300°F the fixture and specimen were heated

,_ 14
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Figure 3-9. High Temperature Test Setup
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using the app'_ratus shown scLematically in Fig'ure 3-10. The actuai t_.st setup is shown

in Fi_re 3-9. One bank o_ 8 ird.-a red lamps and one-bank 0f 6 inlra r_d lamp_ w:_re
?

" _ twed to heat ti:._.fixture close to the test _emperatur e. High temperature dry air was

then Ied _tt the lower end-of tne tesf fixture and exha_cea £r,_m the top co bring the spee--

imen and fixture up to the required test tempera tm'e and zo reduce the thermal gradiants

in the spee_en and fixture. V_en the required temperature was _ead_.d, the air fl,_:a
2

was shut off, the vacum-_: valves closed, aed the fixture evacuat,_.d. The aeat lamps were

kept on until after crushing of the s-_cimen to maintain the test _emperature.

3.4 I.L)WTEMPERATURE TESTING

The testsetupused for -150_F and -2_u F testingisshown schematicallyin Figure 3-11.

Figure3-12 isa photographoftheactualtes_setup.As describedpreviouslyih

thissection,itwas necessarytocoolthefixtureand specimen withthepistonand

sealremoved. The openingatthe topof theoutercylinderwr.scovered w.itha polystyrene

sheetantian exhaustlinefed coldairfrom the topofthefixtureintothepolystyreneco;__

box surroundingthefixture.The fJ.'_urewas firstpurged by passingdry.nitrogenthro,tgh

thesystem and thencooledby flowinglow temperaturenitrogengas imo thecoldbox and

fixture.Low temperaturenit-_)gengas was alsofed througha vaporizercoiland sprayed

across the observ_on wi_:low to alleviate the window frost problem. When the fixture

reached -100 ° the nitrogen flow into the fixture was shut off by closi.ng the cryogenic

vacuum valve, the piston and seal assembly inserted, and the vacuum ptdled in the fix-

ture. Low, _perature nitrogen gas was coLdnuous:y sprayed on the back of the fix-

ture and across the observation wind(_w and the specimen crushed when the fixture reached

the test temperature (-150°F or -2C0°F).

3.5 DYNAMIC SEAL DEVEIX)PMENT
I

Inthedesign of the test fixture, the problem of providing a dynamic sliding vacuum seal
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Figure 3-12. Low Temperature Test Setup
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for operation over a temperature range of +300°F to -260°F was found to be a formidable

one. An ackiitior_l problem was presented in the seal design, with the pcssibiilt7 that the

projected, temperature gradient along" the length of the outer piEton could probably be as

high as 300°F for tests with a specimen temperature of -260°F. Such a condition would

therefore require a seal and outer cylinder bearing which could accomodate the change in

c_ter piston _iameter during strokil_g. In order to ,'est the static seals, tb : dynamic seal

design, and the cryogenic vacuum valves to be used in the te:'t fixture, a small seal evalu_ -

tion fixture was constructed. Figure 3-13 shows this fixture. The outer cylinder was

made with upper and lower ends which are identical to those on the actual test fixture.

The dynamic seal gland parts and the base plate were the actual parts (or the full size

test fLx_ture. The dynamic seal parts and the base plate were later replaced in order to

co_W,nue development of the dynamic seal fc_" cryogenic testing while roon: temperai_.u'e

and l_gh temperature specimez: tests were being conducted i_ the drop test iLxture, No

sealing problems were encountered with the static seals or the cryogenic wcuum valve

",hen tested in this fixture over the required environmental temperature range. The first

dyu3_nic seal design tested, shown in Figure 3-14, was _ teflon "Vee" ring packing v,hich

also acted as the outer cylinder bearing. This design utilized split teflon "Vee" rings., to

allow for circumferential expansion and contraction, and also incorporated teflon back

up rings. ,Axial load was applied to the seal througil a spring ring. This allowed t_e seal

to deflect axi_ly during stroking with only a :;mall axial load change. It was determined

*,obc impractical to machine the "Vee" rings accurately enough to create a vacuum tight

seal all around each ring, or to apply sufficient press_ re to deform the rings to create a

seal at ruov. temperature. A new set of teflon "Vee" r_ngs was then manufactured with

a thinner crors sec,'ion without the split and the sprh_g ring was removed. Again

it was not possible to deflect the "Vee" ring stack sufficiently to create a vacuum
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sea! below about +20°F. Dii, er_entia] contraction be[vveen the seal outside diameters

and the aluminum housing accenh_,ates this problem, requiring greater seal deflection as

the temperature decreases and much higher seal pressure as the material is becoming

more rigid. A further change was made using split Kel-f adaptors, split thick Kel-f

"Vee" rir, gs ,4no!thin sol_d teflon "Vee" rings. This design was found to operate satis-

factorily from room temperature up to +300°F but would not operate satisfactorily at

cryogenic temperatures. This design was then used for the room temperatdre to

+300°F testing (see Figure 3-7 configuration 1), while a separate study was conducted

to determine a seal configuration that would operate in the low temperature range.

In order to use the diiferential expansion between the teflon and aluminum to help in-

stead of hindering the sealing, al_un,num alloy 3daptoz s were tried in conjunction with

teflon "Y-ee" rings. This design proved better but was still not able to seal a vacuum at

-260°F. The "Vee" ring seal was then redesigned to crea_e a "knife edge" contact area

as shown in Figure 3-15. The cross section was thinned out and *_hemating adaptors

designed to apply loads to keep the seal pressed against the outside ar, d inside diameters.

Two teflon 'Wee" rings seals were used with steel male and female adaptors with a

special steel adaptor betweer, the two seals as shown i_ Figure 3-7, co,-figuration 2. The

steel adaptors were used in order to make the gap between tl_e adaptor and the aluminum

outer cylinder decrease due to, differential con_.raction and hence use this contraction

to its maximum in creating h:igh seal'_ng pressures at low temperature. Each seal was

coated with a thin film of vacuum grease prior to assembly. It was tound that this

design could be made to work and was used for must of the -150°F and -260°_ " testing.

The final configuration used in the latter part of the program is shown in Figure 3-8.

It uses two extra Kel-f "Vee" rings to increase the bearing and seal area and a teflon

"Vee" ring to act as a scraper. Each sea, wa_ coated with a thin film of vacuum grease
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prior to assembly. In orde:. _ to make the seal work satisfactoriT_y it was determined

expe:imentally that a va,-uum seal must first be.obtainod before the seal assembly

eaches a temperature of -20 °F, as below this temperature the seal becomes too

•,_tiff to flow into small irregularities, once the seal has been established the differential

contraction increases the seal pressure sufficiently during the succeeding coot down

period to maintain a vacuum of 3xi0 -1 TORR or less at a sea1 temperature of -260°F.

more detailed account of the dynaraic seal development is contained in the raonthly

progress r_.po_s for this program.

3. _ INS TRUMENTA 9._ON

3.6. _ Temperature Measurement

Temperature measurements were made usi_g seven con-o-pack copper constantan wire

thermoc3uples with al'xninum sheaths. Temperature readings were made at the inner

: and outer load cells, the inner piston head, three equally spaced positions on the outer

cylinder wall, arid in the center of the diffuser block at the bottom of the outer cylinder

as shown in Figure 3-4. The thermocouples were wired through a switching box to a

Wheeler model 310 _o*entiometer.

3._.2 Pressure Measurement

The pressure in the te_t fixture was measured with a General Electric tt, ermocouple

vacuum gage (Type 8651860G) mounted in the center" of the outer cylin&c,r wall and

read out on a General Electric tbermocoupie vacuum gage reader type #8298238G. This

instrument (shown in Figure 3-13) gives a d',rect pve:3sure read_.ng in microns. .he

gage has a range from 50n to 5 microns.
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3.6.3 Accelerome_ers , "

Statham Model A-5-A silicon fluid damped seismic mass accelerom,=ters were-,used
c

to measure the drop m_ss and piston accelerations. The drop mass accelerometer bad

a rafipg of 10g's and a r.tturai frequency of 250 c.p.s. T]'e piston accelerometer had

a rating of 500g's and a natural frequency of 1500 c.p,s. The piston accelerometer

was mounted to the instrumentation ring at the upper end of the outer piston as shown

in Figure 3-4. The acce]erometer signals were fed through an amplifier and galvano-

meter into an oscillograph recorder. The dynamic re_oonse characteristics and accu-

racy of this equipment is given "_t the end of thls section and in Table 3-1.

3.6.4 Stroke Measurement

Drop mass travel and piston stroke were measured using a variable resistance slide wire.

The moving clip, attached to the f_xed slide wire, utilized a whea+_stone bridge circu't

wired so timt the bridge was temperature compensated. The wires for beth mass

travel and piston travel were positioned as far as practical from the test fixture to keep

the temperature change alo_g the wire as small as possible. For the low temperature

test, where the cold box was us_ a, the slide wires were outside the box (see Figures

3-4, 3-10, and 3-12). The piston slider was attached to the instrumentation ring at the

upper end of the outer piston as sh,_wn in Figure 3-4.

3.6.5 Load Measurement

Strain gage load cells were built into tht, outer piston for use with the large annular

specimens and into the inner piston fo, u_e with the small an_,',,a!ar and solid specimens.

A three pin strain gage load cell was positmned unaer the lower outer cylinder, Figure

3-3 shows the location oi these load cells in the fixture. During rig check out and initial

testing a_, additional load cell was attached to the top of the inner cylinder, as shown in
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Figure 3-4 for use in tb:,_,rr.linJr, g :J,e ri_ d_alamic characteristics. The slvain ,.,a,_es ._n

the inner -ind outer load c:'ds were BuJd Alley --1 trackless gages oonded wi:h G,_ 5

cen,ent. "Fhe lower load c:,ll u.,_ed Budd C-12-_24 coas_anton a1.io_ gages with e_<y

fihorgi:.ss l:acking. T,os¢ _r_ao_r,=........._ ,vere I-,nded v_i_h GA-60 romon_ a_d C:'lihv'_iad......... fro_:

+2.c,_=F to -3O0_Y. Fi_:_ure .i-15 s the calibration curve for this !oat" cell. As can be

see,, the load vs strain curve is linear for all te,_L')¢ratures _ith an ; _crease in slope

e,,'curing with a decrease in :e:,_perature. "/'_'.e ci,ar_ge in slope with ter._pe,"ature is due

to the charge in '.',_-ag's mo_h,h_ for the material and the change in stlain gage sen-

.=itivitv. The charge in modulus accounts for the r:,ajority of ti'.e slope ct.ange. The com-

pressi¢_ modulus varies frora 11.1 n 106 lb./ih. 2 at -260:F t(, _.6 x 106 lb./in. 2

at _-300' F. In or.l, :- to detern:ine the gag_ and bonding, agent to use for operaP,3r from

+300OF to -30G_F ._everal type_ of gages ar.d b mdintt m..terials .=ere tested. Call, ra-

t.ion of tie gages wa,o obtained b3 loading th¢ load cell in an Jnstron machine (see Figure

3-1) at t_,e temperatures s_own on the calibr'_tion cnzve Fig-ure 3-'.6. S,h..lar calibra-

tl ns were made for the o_her load cells and are rel:_)rted in sect_,on 'f of this report.

Dynamic test .-tats for the mass travel, piston trave, and load elis was obtained by feed-

ing the signals through amplifiers and galvanometers _a an oscillograph recorder. The

dyr :mic response characteristics al_d accuracy of this cquipment is given at th_ end of

this Section and in Table 3-1.

.During static testing, the piston stroke and h'wer load cell were wired to an Electronic

i_ssoc-:ates Inc. Model 1110-99.60 plotting board to obtain z dhe_ t plot of load vs stroke.

The inner and outer _oad cells were not used durin ,, these tests. The Model 1110-99.60

piotting board has a static accuracy of 0.1qb and a maximum slew rat_ of 20 inches/sec-

ord. When recording amplitudes ot 10 inches, th_ n,aximum freq_.ency resp._nse is limited !

3- ',16 ._:
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to 0.3 c _ s.. but at a recording am ,litude of one inch the frequency response of the

board v,,. _Jd not reach its I=.,_.i; until 2.5 c._.s. During the crushing portion of the stroke,

the amplitades were considerably less than one inch.

3.6.6 Oscillograph Recorder and Associated Equipment

Accelerometer, mass travel, pistgn stroke, and load cell signals were fed into Consoli-

dated Electro-Dynamic Corporation Model 113B bridge balance amplifiers with a 3KC

carrier pow,:r supply. The signals wer thenfedthrough galvanometers to a Consolidated

Electro-Dynamics Corporation Type 5-114- P4 oscillograph recorder. The amplifier will

drive a !oad c.;crespond_ng to 1our inch double mnplitude deflection, on a 323 galvanometer,

within -.._o of the maximum output. The amplifier output amplitudes, with the amplifier

properly loaded, are constant to 2'_ for modulating frequencies from 0 to 500 c.p.s.

Matching networks were used where necessary, between the amplifier and galvanometer, to

insure the correct araplifier ioadirg and galvanometer damping.

Natural ]

Galvanometer Frequency Flat Respo- ._e 5c_
P_ ram eter Type c.p.s, c.p.s.

Inner Load Cell 323 1,006 600

Ot,ter Load CelI 323 1,000 600

Lower Load Cell 323 1,000 600

Mass Travel 323 1,N00 600

Piston Stroke 323 1,000 600

Drop Mass Acceleratmn 339 50 30
50g Accelerometer
600 c.p.s. Nat. Freq. i

P:ston Acceleration 345 335 ] 200
50Og Accelerometer

!

1500 c.p.s. Nat Freq. I

Table 3-1. Galvanometer Dynamic Response
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SECTION 1%r

DYNAMIC ANALYSIS OF DROP TEST FIXTUFt.E

4.1 INTRODUCTION

Inorder toobtain_e true crushingcharacteristicsofthehoneycomb test_pecimens.

i
[ it was necessary to determine the influence ef the test fixture dynamics on the output
i

i of *_heload cells. To accomplish this, a dynamic analysis of the test fixture was per-
[ formed using a mathematical model of tJ_e fixture on an analog computer. A hypotheti-
t

cal honeycomb load-stroke curve was used in the input to the computer and the resultiru_

load cell output enabled the effect of the fixture dynamics to be determined.

4.2 DESCRIPTION OF MATHEMATICAL MODEL

Figure 3-4 (Section III) shows the test fixture assembly and the position of the load cells

on the fixture. The physical system was simulated by the mathematical model shown in

Figure 4- 1 in conjunction with the [orces acting on tiae system due to vacuum in the

fixture and a pre-load applied to the bellows as shown in Figure 4-2. The mathematical

model is for the configuration used for testing the solid section capsules SPX-166 as

shown in Sectio,: III,Figure 3_6c. The equations of motlon for the systen are:

MoXo + fo = Mog (1)

M4_4_K5(X5_X4) _.K4(X4-X7) = pA l+M4g (2)

M7X3-K7(X7-X3) + f3 = MTg (3)

4-I
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(M I+M3) X I+(C I+C2) X l +(F+ K 1XI) + PIA2-AI) = (M1+ M3) _

+ f3 _ (F - KsXI) -PA 1 (4)

K4

(XT-X 3) - K7__K4 (X4 -X 3) (5)

Table 4-1 lists lhe parameters and the numerical values used in the computer solt_tion.

Figure 4-3 is the hypothetical honeycomb load/stroke curve iHpdt tv the computer.

The toad f3 is determined by the value (X3 - X1) in conjunction with the maximum pre-

vious value of this func)ion;

when (X3-X1) < (X3-X1)MP V - (F3) 0/K 3

'Iben f3 = 0

when (X3-X1)MP V- (F3)0/K 3 < (X3-X 1) < 'X3-X1)MP V

t (F3)0 Ithen f3 = K3 (X3 - X1) - (X3-X])MPV _ K3

when (X3-XI)MP V _ (X3-X1)

then f3 = (F3)9

Figure 4-4 is the load-deflection characteristic oi the rubber impact pad positioned

below the drop mass. This curve was obtained by static testing of the impact pad.

An equation was obtained for the hysteresis looi_ by a i')rce fit to the experim__ntal

data. The load I0 is determined by the value (X)vXs) and the maximum precious

value of (X0-X5);

If (X0-Xs) is positive then f0 = Fs=(X0"X5) K0

If (X0-X5) is negative then f,,) = F 5 = K0 (X0-X5)3

X 2( 0-X5)Mt,V

The h',regoing equations were programed fo: an analog computer, the flow diagram for

which is shown it, Figure 4-5

4-2

1965021582-073



_.b_rIn,pact _ ]._--"Pad Load Characteristics
of Rubber Pad

--.- (SeeFigure4-,I)

Upper Load Cell _. K X
, Stiffness

Piston Mass -[-_-_ 4__j
X4

Piston Stiffness _D,: K 4

Inner Ioad Cell
Stiffness _ K? X 7

Piston Herd Mass-------_

J _ (F)oA___

i
I

Honeycomb

. Specimen _4 K3 I Hypothetical HoLey,='ombI

t- ..... J I,o_d-Stroke Curve f3
Honeycomb Mass _ [

_ _,/____j (geeFigure 4-3)

Bellows -- _ - _ "-!
K6 L,, .A

Stiflness ....C2 f3-_I_{,_, |

Lower Outer __ M _X 1Cylinder Mass l

Lower Load I +

Cell Stiffness _- K1 C1

/ ;////.,, /). /////// 2/).////;//t/-

Figure 4-I. Mathematical Model of Test Fixture
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', \

,_-(\
Inner Cylinder _ ,,\C"\\_(Piston)

_AI4

f-_ _._"_ Vacuum = 3x10 -I
_,'\'_ TORR or Less

/ _

Outer Cylinde r-_._..,.._ / \_,"_/ Specimen

/ • \/

/
/

/ Bellows

_- _ "(Stiffness = K6)

Lower Guter _""_'\ .,_2

Cylinder \\
\ 'A ,
,'_ _ 2_

Outer Cylinder _FFixed to dloor \ (Preload P Lower Load Cell

Force) C'- ..... (Stiffness = K1)
i /

-7///// / / ,'//////,, "////F////////////

Figure 4,2. Schematic of Test Fixture SLowing Forces Due to
Vacuum and {BellowsPre-Load
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Table 4-1. Parameters and Numerical Va]ues

How

Parameter Description Numerical Value Obtained

M0 Drop Mass 4.98 lbs. sec 2/iu Selected
drop mass

M 1 Lower outer ,_yli_=der mass 0.116 lb. sec .2/in Calculated

M3 Honeycomb test specimen mass 0,0073 lb.sec2/in Calculated

M 4 pi,oton Mass 0.317 lb.sec2/i_ Weighed

M 7 Piston head mass 0.018 lb.sec2/in Calculated

K 1 Stiffness-lower load cell 1.76x 106 lbs./in Calculated

K 3 Stiffness - honeycomb specimen 55,000 ID_.,/in Estimated

K 4 Stiffness - piston 0.90 x 106 lbs.,/" n Calculated

K 5 Stiffness - upper load cell 2.0 x 106 lbs./m Calculated

K 6 Stiffness - bellows 0.11 x 106 lbs./in From test
data

K 7 Stiffness - inner load cell 5.34 x 106 lbs /in Calculated

K0 Compression Stiffness - rubber 91,700 Ibs./in From test
impact pad. data

_I DL_.secC 1 Dau_ping coeff, lower load ceil 0,2 M1 in

C 2 Damping coeff, bellows 0.2 ,q K6 M1 Ibs.secin

P Diiferential pressure on fixture 14.7 lbs/in 2

P'I Inner cylinder area 30.63 ,.'n2 Calculated

A2 Effective area below bellow: 56.45 in 2 Calculated

F Preload on bellows 1050 lbs. Calculated
Min.
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Table 4-1. Pa;ameters a,d Numerical V_'ues (Concluded)

How
Parameter Descr:ption Numerical Value Obtained

(F3) 0 Honeycomb crusi_ load 5,500 lbs. Selected

f3 Honeycomb crush characteristics See Fig. 4-3 Hypothetical

f0 Rulcoer impact pad characteristics See Fig. 4-4 From test
data
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"- (X3-X1)MPV (F) "_

0 .... 1

0 0.1 (X3 - X1) Inches

Figure 4-3. Hypothetical Load Stroke Curve

14

J d12 t
Loadn_g

10 --f0 = (X0-_ _ Unl°adilN

[__50__],v ..,3
_, s - - _jlo =|(xo- x5)_I_"o-'5'
"_ L MpvJ

u 4

2
I

0
0 .04 .08 .12 .16

(X0 - X5) = Deflection Inchea

Figure 4-4. Rubber Pad Load Character:tstics
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4.3 RESULTS AND CONCLUSIONS

Figure 4-6 is the output of tl _, an_tlog computer program for a drop weight of 1920 pounds

at an impact velocity of 120 in/sec. The lower curve is the output of (K 1 + K 5) X1 wnich

is equal to: 1

"(l°weriJadcell°utput) l [ 1- (K_+K6) ] I

Figure 4-7 is an enlarged plot of this trace. As is to be expected the rig dy,,amic in-

i Iuence is both cyctic and transient, the measured load cell force being alternately greater

and smaller than the spe,cimen input characteristic, with the discrepancy va,,ishing as

the transient dynamic influence decays. The wave form gene,'ated is a decaying sinu-

soidal such that the average of the apper and lower envelopes (Figuz e 4-7) should

represent, with good accuracy, the true specimen characteristic. Comparing the result

thus obtained in Figure 4-7 with the analog output of load cell load versus stroke super-

imposed ov the specimen input load versus stroke, shown in Figure ,t-8, it can be seen

that the envelope average gives an accurate value of the specimen int_ut characteris'ic.

Figure 4-9 is an oscillograph record for a t_st at the same impact conditions as the

analog output in _'igure 4-6 on a specimen of type SPX-166. Comparing the ¢_scillograph

record with the a.,_log output of the lower load cell it can be seen that the wave form

generated is of the same type but w,th a different frequ,_ncy. Comparing the ,_pper load

cell trare (Figure 4-9) with the force _utput of the rubber pad (::0)(Figure 4-6) it can be

seen tbat the piston and impact mass do not separate in the act, tu] _est as they do in the

an;dog simulation. The half wave of the impact force has a frequency of 83 cps, whicil

is the natural frequency of the piston - rubber pad spring mass system, and is ¢iose to

the lower load cell frequency seen on t_:. oscillograph trace, in the analog simulation

the piston moves away Crom the drop mass, hel, ce this frequency will not propogate

through the system, while in the actual test cortact is maintained as shown _y the upper
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r_rce Output
Ru_r Impact Pad " ' " ' ....... : .................

c_ ......... - ...........
_._ _ ._-. - -_

Drop Mass Travel " - ; ........... - ....................

. ...............................................................

.... __-__=.-_-______-_-.- --'_.-.-5__---_--::i-__-.-:i
...........................

...............................................

.................................

Pi_ y eloci_" ...............................

(X4) ................................

..............................................

.........................................

.............................

.....................

Loaa-I_er Load Cell .....................................

_%-h _ "_i__i'_-:-__i-_;i__i.i'2_2..__i± "
.................................

Re!aOve Position
of Drop Ma_s to Piston Top ................................... : ....

(X0-Xs) ............

.............................................

...................................................

l.oS5(Lower_ CellLo_d)

_.__F_........_.{.........:...........:................
= • _ . ,

' I ._'- " -.O01Sec.-........ .:. . .I.... L: .....Time Scale ....

Figure 4-6. Analog Computer Output (Drop Weight = 1920 '.bs..
Impact Velocity 120 ins./sec.)
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I i _ I !

7 ...... JL.... : ...... i i ......
_ Upper Enve!ope _ i

' --_--"'---':'/T'_ ......... i- / Decaying Sinusoidal '.................o

] _ I _ _--->.._.__ :,_ Frequency _- 600 c.p.s.

;_ 4 --_--]_"'_._ i-W--".>._t , ,_ EnAve'e,'_Xpe ."i-,................ ',
7'/ Lower Em, elone I t

-v_ 3 /V"q"-'(L°w-- ".................. 1 a:........ _, ____el- Load Cell Load) 1.055 i
........ F .......... _ ......... - .....

0 .005 .010 .015 .020 .025

Time Seconds

Figure 4-7. Analysis of Typical Analog Computer Output
for the Lower Load Cell

load ,,,_-:.1reading, The traces Figure 4-9, for the upper load cell. piston acceleration,

mncr load cell and lower load cell, all have this frequency indicating that tI',e excitation

is propogating from the top of the fixture. The inner load cell trace on Figure 4-6

does show this freqv¢ncy, which matches the rubber pad irequency, wiqa a superimposed

lcec uency of 1,000 cps which can also be seen on the oscillograph record Figure 4-9.

The reason for the piston leaving the drop mass in the analog simulator is that no

coulomb friction d.amping of the piston was included in the mathel_atical mcxtcl, which

_s present in the actual system at the dynamic seal and piston bead bearing. As it was

intended to make only a limited dynamic study o1 the fixture, in order to determine the

correct method t_f interprehng the test data, it was not felt necessary to cha_ge the
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program to include this effe('t. ['igure 4-10 is a comparison plot _f the lower load cell

data fro::-, _-lgure 4-9 and the analog output from Figur_ _-6. Except for the difference in

frequcncy, due to tb¢ piston leaving tl, e drop mass in the analog simulation, the two plots

compare very _:losely and substantiate the accuracy of the dynamic analysis and hence

the method of fairing the oscillograph data. The derivation of the equation used to cor-

rect the faired lower load cell reading, due to the effect of the bellows and vacuum pies-

sure on the load cell, is given in Section V of this report.
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SEC rlON V

DATA REDUCTION TECHNIQUES

5.1 DETERMINATION OF LOAD ON SPECIMEN FROM LOWER LOAD CELL
READINGS

In order to obtain the true loz,d output from the honeycomb specime,_ me physical effePt_

of the fixture must be corrected fcv in reducing the o¢-illo__graph data. Figure 5-1 is a

schematic of the test f,xture showing the forces acting on the system. These forces

along with [he dynamic e_.fects described in Section IV must therefore be removed from

the escillograph data to obtain the honeycomb load characteristics.

Considering a free body of the lower outer cylinder

F b..+ F_ = F L _-(PA2) (1)

v,here Fb is the force due to the bellows

F is the force output of the specimens

F L is the lower load cell force

(PA2) is the force acting on the lower outer cylinder due to the differential

pressure between the inside and outside of the fixture.

In order to maintain a load on the lower load cell, when the vacuum is pulled iu the fix-

tuft, and to use the linear section of the bellows load-deflection curve, a pre-load was

placed on the bello_ s and loa¢, cell, hence,

Fb = Fib - XIK 6 (2)

and FL = FiL + XIK 1 (3)

5-1
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. Vacuum = 3x10- _

Outer Cylinder I
Honeycomb Specimen
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• _,_ _--"_ "(Stiffness = K 6)
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FF-ure 5-I. Schematic of Test Fixture
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I

where Fib = bellows preload

FiL = load cell preload

X 1 = deflectiou of lower oute:" cylinder under test con'Jitions

K 6 = Spring rate of belluws
K 1 = Spring rate of lower load cell

_ Substituting equaho,ls (2) ana (3) in equation (1)

Fib - X1K 6 +F s = FiL+X1K !+ (PA 2) (4)

f

_" The preload force in the bellows and lower load cell m_,st be equal, therefore Fib = FiL

-- K6

The lower load cell was zero calibrated with the preload (FiL) on the load cell, therefore

the iower load cell reading will be X1K 1.

Load on specimen = F X1K1
s +(PA 2) (5)

[1
(KI+K 6)

The numerical values for these parameters are

K 6 = .11 x 106 lbs./in.

K 1 -- 1.76x 1061bs./in.

A 2 = 56.45in._

P = 14.7 ]bs./in2

Load on specimen = (Lower load cell load x 1.055) + 860 (6)

The effect of the rig dy.Pamics in the lower load cell out,)ut was removed by fairing the

oscillograph trace in the manner described at the end of Section IV.

5-3
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Hence the readip_gs made from the oscillograph give the 19wer load cell readin{_ including

the effects of pressure and bellows forcc_. The load _)utpat of the sp,_.cimen is given

by the following expression

(D-F) (R-Cal load) ]
Specimen load : (R-Cal deflection) 1o055 + 860

where

(D-F) = Distance trom trace zero to faired curve,, 'D' Figure 5-3. and 'F'
Figure 5-4.

(R-Cal load) = Load value of resistance calibration

(R-Cal deflection) = Distance between trace a_ zero and trace under resin
tance calibration load.

Data ;eduction of the other load cells and accelerometern uses standard procedures and

is described in the following paragraphs of this section.

5.2 PROCEDURES FOR REDUCING OSCILLOGRAPH DATA OF' DYNAMIC TESTS

The parameters shown in Table 5-1 were recorded on a Consolidated Electrodynamics

Corporation oscillograph recorde_" as described in Section HI. The temperature at each

load cell, the positions of which are shown in Figure 5-2, were recorded prior to each

blgh or low temperature drop for use in determining the cor_'ect calibration value for

the particular load cell.

Prior to each series of drops _nd with the fixture at atmospheric pressure, a zero and

resistance calibration was recorded on the oscillograph. The deflection of the oscillo-

graph traces, for the load cells and accelerometers,from the zero to R-eel position is

the measure of galvanometer deflection for the particular resistance calibration

switched i_to the circuit. The value of the resistance calibration for each parameter

recorded are given in Table 5-1 and Figures 5-6 through 5-8 inclusive.

5-4
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Therm-couples

1 Center of P_:ton

2 lnnel Piston V:.!I (Inner

l Load Cell Temp.)
2 _. 3 Outer PistonWall (Outer
3 -_ Load Cell Temp.)

I't

,,, 4 Upper CylinderWall
[' : , 5 MiddieCylinder Wall
I'

' 8 Lower Cylinder Wail
7 Bottom of F_ture

8 Lowe: Load Cell Temp.

[

I

' .: Typical Thermocouple
Outer Load CeL1----._ ' : X'--- Installation

¢-t
Inner Load Celt --/ k_

j _ _ _,__ Outer Cylinder' , Wall

-Lower Load Cell
7

8 i

Figure 5-2. Sketch of Thermocouple Locations
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The paramete_'s associated with the galvanometer traces on the osciltograph record are

identifie(, by the pos,:tion of the break in the trace. The break number is determined by

chc ?osition of the break _n each tract with increase in time, but excluding, the top a_id

base reference lines, as shown on the sample oscillograph record. F:g'ure 5-4. The

parameter associated with the particular break number is identified in Table 5- 1.

5-1.

5.2.1 General 1_rocedure

To determine the R-Cal. deflection: - Figuze 5-3 is the catibration portion of an oscil-

lograph recerd. To determine the R-Cal aeflection, measure the distance from _he zero

trace (on the zero record) to the R-Cal trace (on the R-Cai record). For break 2 (outer

loan cell) the R-Cal deflection is (A-B) inches.

Figures 5-6 through 5-8 are the calibcation curves for the load cells. Tim R-Cal value

is obtained by entering the curve on the ordinate at the strain R-Cal value and reading

the toad on the abscissa for the intersection with the calibration curve _orrespon(lin[: to

the loaa cell test temperature. The R-Cal value for the accelerometers does not change

w_.th temperature and is given in Table 5-1. E.g. For break 2 (outer load cell) the R-

Cal value for room temperature from Figure 5-7, is 4,350 pounds.

To determine the cal:bration factor: - The calibration factor is determined by dividi_

the R-Cal value by the R-Cal deflection. E.g. For break 2 (outer load cell) at i'oom

temperature, the calibration factor = _ = lbs./inch of oscillograph deflection.
(A-B)

To determir, e the value at a particular time:- Measure the distance from the base line to

the trace, on the "run" portion of the oscillograph record, and subtract the base IAne

to zero value. (This gives the trace deflection). This value multiplied by ;he calibratiou

5-8

l k,

1965021582-095



I

1965021582-096



1965021582-097



I

1965021582-098



5-12

1965021582-099



5-13

1965021582-100



factor gives the value of the parameter at that time. E.g. From Figure 5-4 for break

2 (outer load cell) during a room temperature test, the value at .03 seconds after impact

is given by
4,350(A-C)

Load (Lbs.)at t --.53Seconds = (A-B) = (A-C) x Calibrationfactor

5.2.2 Lower Load Cell

To determine thehoneycomb specimen loadfrom the lower leadcellitisnecessa,'yto

modify theloadread from the oscillographrecord due tothe effectofthe bellowsload

and vacuum pressure as describedin paragraph 5.1.

The procedureused forthe lower loadcellistofirstdetermine thecalibrationfactor

as describedabove. The oscillographtrac_ isthenfairedusingtheprocedure described

JnSectionIV,which givestheenvelopeaverage shown by thedraftedlineon break 1,

Figures 5-4 and 5-5. The oscillographdeflectionisthenread inthe usualmanner and

thevalue obtainedcorrectedfor bellowsand vacuum pressure effects.

R-Cal value

Specimen Load = (D-F) R-Cal deflection 1.055 + 860

where
D = distancefrom thebase linetothe zero trace Figure 5-3.

F = distancefrom thebase linetothe envelopeaverage hne, Figure 5-4.

R-Cal value = Load valueofR-Cal resistanceatloadcelltest_emperamre, see Figure
5-6.

R-Cal de- = distance(D-E) Figure 5-3
flection

1.055 = correctionfactorforloa_due tobellows
1

: [ ]K6

1 (K1 + K6)

8_0 = correction due to differential pressure = (PA2)
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The lower load cell data was used to obtain the maximum peak Joad (including rig dynamics),

the minimum load including rig dynamics (identified in Figure 7-36 and other data list-

ings as _he "minimum peak load"),the true honeycomb specimen peak load (irom the

faired curve) and the load onset r: e.

The outer load cell (Break number 2) was used when testing samples SPX 167 (external

annular) configuration. The ini_.er load cell (Break Number 7) was used when testing

samples SPX 166 (Solid circular) and SI=X 168 (internal annular) co,_guration. The loads

read with these load cells were used to check the load values obtainefl from the lower

load ceils. The mass acceleration (Break Number 3) was integrated to obtain impact

velocity.

The mass acceleration was calculated as follows,

R-Cal value
Mass acceleration = x trace deflection

R-C,d deflection

2g x trace deflection
R-Cal deflection

NOTE: The R-Cal deflection and trace deflection are obtained as described
under General Procedures

. A further accelerometer oll the drop mass (Break Number 8) was used in initial testing

for comparison purposes. This trace was also used in initial drops for the upper load

. cell, for checking the rig dynamics.

The piston stroke (Break Number 4) was calculated as follows,

Stroke - (G-J) x Total stroke

(G-H)

where

(G-J) = trace deflection at point being measured, see Figure 5-4.
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(G-HI = ToLal trace deflection, see Figure 5-4.

Total qtroke = Total pisto_ travel measured after test. (Pecorded on log
sheet.)

The m_ss travel (Break Number 6) measure, _ tile total travel of the drop mass. The mass

travel distance is obtained by the same procedure used for the piston stroke. The mass

travel data was used to check the energy balan:e duriag rig checkout, and used later to

check the mass drop heibht wben re,auired.

The piston acceleration (Break Number 5) was not reduced, but was u_ed to determi,m

the impact time.

5.3 TEMPERATURE RECORDINGS

Thermocouples were located throughout the test fixture as per the discussion in Section

IlI aad the sketch in Figure 5-2, to determine the specimen and instrumentation tempera-

tures. The capsule temperature wa'; determined by averaging the readings of thermo..

couples 4,5, and 6(see Figure 5-2). The temperature was recorded in the tabular data

for Phase !B and Phase II tests (Ref: Figures 7-63 and 8-51 through 8-56). (A special

test was conducted with extra thermocouples in the test capsule to cc,_-L[irm that recordip_

of th¢ temperature at these points on the cylinder wall would give a true indication of the

capsule temperature).
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SEC TION "VI

TEST PROCEDURES

6.1 GENERAL

The program objectives were attained by conductin,;" the test program in two (2) phases.

Following static tests of the preproduction contro' specimens and design releases for

the individual configurations,the specimen supplier ;orwarded the full-]ength test spec-

imens for each of the nine (9) configurations.

Phase IA testinginvolvedscreeningtestsof eaca ofthe variousconfiguration,-,,._.d_:,

bothstaticand dynamic testconditionsat rcol;,[emperature(Figure6-1). Following

selc:.tionuf thefour (4)superiorcapsulecovfigurationsfrom Fhase IA tests,spec-

imens were checkedunder cryogenictemperature conditions(-260°F) withuse ofa

briefstaticand dyna1,,ictestseriesir Phase IB (Figure6-I). Fron. theselattertest_

two (2)configu _swere selectedtoundergo thefullrange ofthetemperatureenvi-

romnent (+300°F,+150°F, -150°F and -260_F) under both staticand dynamic loadappli-

cations (Figure 6- 1).

.all testing of these full-length test articles was conducted under a reduced mmospheric

presto, re of 3x10 -1 TORR. This vacuum value was not intended to simulate the 'nore

severe vacuum conditions of the outer space environment but only to eliminate the trapped

air from the honeycomb cells which could conceivably, during testing, cause a rupture

of the individual cells in a manner which would affect the crushing load characteristics

of the capsulc.
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PHASE 1

CONFIC.. QL "_NYITY TE3'_ S VACUUM TEMPERATURE
e,

I. A _ 8 Each Static test one specimen: 3x10-1 TORR Ambient
---=---- dy_mmic test 7 specimens

B ' • ?.-_ at varying mass and
: velocities.

C L._.'_

A i2.-A !_--"'_[ 8 Each ] Statictestone specimen: !3xl0-i TORR Ambient
I

i - dynamic test7 suecimens
I

B ;_" _ I atvaryingmass and

Ci,__', i velocities. [
!,_ :_ 8 Each Static test one specimen; 3x10-1 TORR Ambient3. A _,__z___
,.... _. dynanfir test 7 specimens

B _ at varying mas._ and
C _ velocities.

1B '_L__._-_ 2 Each Static test one specimen; 3xlC -1 TORR -2C0°F

dynamic test one specimenB 1C at one mass m,.d 3 impact

2C _ velocitie:.

3c]e :

PHASE II

1 i..TYPE QUANTITY _'ESTS VACUUM TEMPERATURE
l, , '"

2C 31 Static test 3 specimens; 3x10 -1 TORR -260°F
r._ _ , dynamic test 28 specimens

atvaryingmass and impact -!50°F
velocities.

3C 31 Static test 3 specimens; 3xlu -1 TORR +I50°F
--r_-----_ dynamic test 28 specimens

at varying mass and impact ._300 ° F
velocities.

Figure6-!. Test Program Outline
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6.2 PHASE IA TEST OUTLINE

Fhe initial test efforts on the full-length test articles encompassed the testing of

eight (8) each of the ni.,_.econfigurations. One specimen of each configuration was

subjected to 2 static test a:.d ::even specimens were subjected to dynamic tests im olv -

ing various te_t weights ano impact ve'_.ncities (Figures 6-1 and 6-2). "_he maximum

impact velocity of 20 feet per second was calculated to utilize the full stroke capability

(approx. 40") o_ the specimens. The other impact velocities of 14. 10, and 5 feet per

second allowed repeated imgat.ts to be made on the same specimen to determine how

its characteristics changed as the total length of the specimen decreased. This amounted

to as ninny as 15 impacts on some specimens at the 5 foot per second impac_ velocity.

The lower range of drop weight variations also allowed multiple in,pacts on the same

specimen at a constant impact velocity of 10 feet per second,

6.3 PHASE IB TEST OUTLINE

Two specimens each of the four configurations demonstrating the most satisfactory

combination of characteristics in Phase IA _vere subjected to additional static and

[ dynamic tests at a cryogenic te,nperatm-e of -260°F (Figure 6-1). One specimen of each

confi_,m,'ation used (1B, 1C, 2C, and 3C) was static tested and the seccnd specimen of

each type ,vas dynamically loaded at succassive impact velocities of 5, 10. and 14

feet per seco.n.'t using a drop weight of 1,920 lbs. (Figure 6-2).

6.4 PHASE i._ TEST OUTLINE

The Phase H program utilized the two configurations wh_,eh were evaluated with ,_tudy

of t-:nase .IB data as having maximized combinations of the desired per_.tn'raance char-

acter_s[ics. Thirty one (31) specimens of each type were subjected _G the same type

of static and dynam'c tests as outlined in Pha-_e IA wi:h eigl_t each ol the specimens

6-3
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testedat tel;;peraturesof+300:F, ,150 F. and -150 F and seven each tested at a tem-

perature of -260_" F (Figure 6-1). The full range of test conditions w_s covered (in

addition to the static tests) with the impact velocity varying from 5 thru 20 FPS and

the drop weights spanning the range of 760 lbs. thru 3,750 !bs. (Figure 6-2_.

6.5 DE TAI I_.SO F 'rEST PROCEDU RE

The details of test procedure used in satisfying the various test ccrditions, covering

static and dynamic applications of load_ caanges in impact velocity and drop _x;eight.

and adjustments in the test temperatul e are described in tho succeeding paragraphs,

6.5.1 StaticTests

The static tests were conducted with the ec uipment described in paragraph 3.2.1 and

followed the sequence indicated in the outlia,e below:

1 Applied sufficient load to determine effective spring rate (in the elastici

!
i range) prior to initiation of crush action.

' 2. (a) Applied load to crush specimen thru 10_ of its estimated total stroke
i
[ capability. Observed the peak load to initiate crush action and the average

i! crush load after it had stabilized.

, (b) Stroke position held to obserw drop-,affinload ,over a Feriod of 30

seconds or until load became steady, tNote: Measurement of this ,,alue

was extremely difficult for the full length specimens on which it was

attempted. However this load drop-off value under a fixed position was

"i readily recorded and summarized in the short preproduction control spec-

] imen data as indicated in S,,ction VII.I

• (c) Load was removed and obs rvations of load dr,_p-off vs stroke were

made. During applic_.tion of the load for the next incremeut (,f crusl_ stroke
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spring rate was again observed during_ the load buildup pemod.

3. Applied load to crush specimen to a total of 25% of its stroke capability.
Repeated procedures of 2(b) and Cc).

4. Applied load to crush specimen ",oa total of 50t-. of i_3 stroke capabilit).
Repeated procedures of 2(b) and (c).

5. Applied load to crush specimen to a total of 75c_ of its stroke capability.
Repeated procedures of 2(b) and (c).

6. Applied load to crush specimen to a total G[ 100_ of its stroke c_pability,
(until sharp load rise). Repeated procedures of 2(b) and (c).

The detailed events of a particular static test are described here for the various tem-

perature conditions.

6.5.1.1 Rvom Temperature

A. Installed Specimen

B. Zeroed load on X-Y plotter and calibrated stroke.

C. Vacuum. pumped to test value.

D. Attached hydraulic jacks to base of drop rig.

E. Attached dial indicator to cylinder with pointer on piston.

F, Loaded specimen by pulling down on jacks to 4,000 ibs. read and recorded loads
and deflection every 500 lbs.

G. When 4,009 lbs. was attained, the dial indicator was removed and crushing
continued to 4".

It. Unloaded iacks and raised rig off piston.

I. Repeated E, F, and G crushing 6" more on total of 10".

J. Repeated E, F_ G, H but crushed t0" more or total stroke of 20".

K. Repeated (J) twice to total stroke of 30" and 40" respectively.

6-6

mmm, mmmm mu m m • m m '_ !

1965021582-109



6.5.1.2 Cryogeuic Temperature (- 15C _F and - 260: F_,

A. "Zeroed" load and set stroke for "X-¥" plotter.

B. Cooled outer cy'inder spe:imen to -100 F.

C. Shut off flow of LN 2 _o inside of fixture (gas flow continued into insulated
box surrounding outer cylinder_.

D. Assembled piston into cylinder and pamped vacuum to test value.

E. Af*er reaching the test temperature Items D thru K oi paragraph 6.5.1.1
were follcwed.

_. 5.1.3 High "reraperature (+150 _F and +300 _F)

A. Heated fixture outer cylinder w_th hot-air heater and heat 1,"anps to +lS0:F or
+350"F dependil_g on the test temperature.

B. Installed specimen and heated to test temperature. (Note: Test procedure was
planned su,_h that specimen was not at the higher temperature (_-300-F) for
more than 10 minutes. Some of the time figures are shown in the Test Data

1 Summary.)

C. Shut off air flow to inside of fixtare _nd assemb._ed piston.

D. "Zeroed" load aud set stroke on X-Y plotter.

E. Followed Items C thru K of paragratq_ 6.5.1.1.

6.5.2 Dynamic Tests

1 The dypamic tests were conducted with use of the eqmpment illustrated in Figure 3-4

; and tollowed the procedure provided it. the outline below. It was planned that a series

of tests would be run on one configuration at a constant drop weight of 1,920 lbs. wiih

successive speczmens undergoing repeated impact velocities of 5, 10, and 14 FPS respec-

tively and one specimen being subjected to a 20 FPS velocity. A second group ,_f spe, _mens

of the same configuration were tested under a constant 10 FPS impact velocity with suc-

:essive specimens undergoing repeated impacts using d,-op weights of 7a0, 1920 and

28._0 l:)s. respectively and one specimen being subjected to a single impact at a 3,750
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lb. weight, The above variations in velocities ant, weignls provided ample opportunity

to study how these changes in parameters would affect the capsule performance charac-

teristics.

The detailed events of a particular dynamic test are described here for the various

temperature conditions.

6.5.2,1 Room Temperature

A, Installed specimen,

B. "Zero" and "Calibrate" osciilograph records obtair.ed.

C. Vacuum pumped to test value.

D. Raisee drop rig to test height and dropped rig with oscillogr',pb i._. operation,

E. Measured total stroke.

6.5.2.2 Cryogenic Temperature

A. Cooled outer cylinder and specimen to -100°F.

B. Shut off LN2 flow to inside of fixture (Gas flow continued into msdated bu_
surrounding outer cylinder).

C. Assembled piston into cylinder and pumped vacuum to test valae.

D. Cooled fixture to test temperature.

E. Raised drop rig to test height and dropped rig with oscillograph in operation.

F. Measured total stroke.

G. "Zero" and "Calibrate" oscillograph records obtained at atmospheric pressure.
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6.5.2.3 l/igh Temperature

[ A. tieated fixture orate, • cylinder with eeat lamps and hot air heater to +150F
or +350:F dependent on the t, st tel ,_erature.

B. Installed specimen and heated to test temperature (Note: Test procedure was
planned such that specimen was ,ot at the higher temperature (+300 F) for
more than 10 minutes. Some of the time figures are shown in the Test Data
Summary).

C. Shut-Off flow of hot air through insi:tfi of fixture and installed piston.

D. Took "Zero" and "Calibrate" oscillograph _-ecords.

E. Vacuum pumped to test value.

I,'. Raised drop rig to test height and dropped rig with oscillograph in operation.

G. Meas,,red total stroke.

6.5 TFS F SPECIMEN INS_ALLATiON

All ful! length test specimens were te_tcd in the test fLxture (Figure 3-4) which is

fully described in Section [/[.

The specimens were installed in the _est fixture using guide tubes whicn necessitated

minor changes when preceeding from a configuration with ol,e cross-sect';onal urea

to that of another cross-sectional area (Figure 3-6) . Guide rir-_, fabricated from

t Styrofoam or balsa wood as the test temperature dictated, were loosely fiited to the

specimens as shown in Fxgure 6-3. The "internal annular" higtl crush strength spec-

imens (Configurations 1A. B and C) were .guided by placing the guide rings between the

specimen outside diameter and the gxfide tube inside diameter. The "external almular"

medimn crush strength specimen (Configu,_ation 2A. B & C) utilized guide rings between

the specimen inside diameter and the guide tube outside diameter. The "circular solid'

low crush strength specimens (Co_ffiguration 3A, B & C) were guided with the rings

located between the specimen outside diameter and the guide tube inside diameter.
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" Most of the guide rings used for the room temperature and cryogenic temperature tests

were fabricated from styrofoam with a crush strength of approximately 50 PSI. The

; high temperature tests required the use of some other material which was ca-able

of enduring this environment without excessive deterioration. Balsa wood rings of

1200 PSI crush stlength, which were presently available, proved to be the answer

for this requirement.

Three rings, evenly .spaced along the length of the capsule, proved to be entirely ade-

quate for most specimens ¢o insure that the capsules would initiate their regular cmtsh

patterns without buckling. On isolated cases which had any tendency to buckle, shear,

_- fail in an unusual or catastrophic manner the addition of more rings (anywhere from

five to eight) , or a change to hard wood rings in one case, was not s_xffi,Aent to prevent

such failures.

6.7 .TDENTIFICATION OF TEST SPECIMENS

The magrfitude of the program and the number of specimens i_,volved made it necessary

to establish a system of individual specimen identification whi_.tt would allow easy cro_s-

reference when comparing data from the various specimens. A system was used which

permits this comparison to be made.

Each group of specimen configurations is identified by the nomenclature shown in the

following example: Indicates temperature, type of
test, impact weight, and impact

F'-- velocity. (See sample in FigureCross-sectional shape ! 6-4 and complete summary in

(Ref. Fig. 2-3) Sp____ __ Figure6_2.)
Cell angle with lo.gitudinal axis

(Ref. Figure 2-3)
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Specimen No. ITemperatu:e ] Test Impact Weight (Lbs.) Impact Velocity (FPS)

SPX- 168A1 |/ Room Static
!

SPX- 168 A2 Room Dynamic 1920 5

SPX- 168 A3 Room Dynamic 1920 10

SPX- 168 A4 Room Dynamic 1920 14

SPX- 168 A5 Room Dynamic 1920 20

SPX- 168 A6 Room Dynamic 760 10

SPX- !68 AX Room Dynam.ic 2850 10

SPX- 163 A8 Room Dynamic 3750 10

Figure 6-4. Sar._ple of Nt_rabering System for Identification of Test Specimens
(Fer full te_t program sum,nary with identifying specimen No's. see Figure 6-2.)

Some of the configurations tested in the _arly part of the program were identif.ed with

an additional dash nmnber (ie. SPX- 166C3-4). This second dash number (- 4) indicates

the subsequent number of specimens of the same configuration which were tested under

that set of conditions identified by the number (3).
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SECTION VII

PHASE I TESTS

7.1 GENERAL

Following the fabrication of core configuration samples and procurement of the srecified

5056 foil material, the test specimen supplier proceeded with construction and test of

the preprcduction control samples. Attainr:-,ent of satisfactory resm_s for the various

configurations as listed under the basic specimen requirements (Figure 2-3) resulted

in shipment of that configuration to Bendix for initiation of static tests on these articles.

The_ze Bendix test results, when confirming that the specimens were meeting the pre-

scribe, l requirements, resulted in a design release for fabrication of the full length test

specimens of that configuration. ReceiI_t of the full length specimens then allowed the

initiatio;_ of l_nase I tests in two parts. The following outline provides a sequence of

events leading through Phase I.

1. Fabrication of core configuration samples.

2. Fabrication of preproduction control specimens.

3. Vendor test of preproduction control specimens.

4. Bendix test of preproduction control specimens.

t 5. Design release for fabrication of full length spec_ime,_s.

6. Fabrication of full length specimens.

7. Phase 1A tests (9 configurations - 8 specimens of each, room temperature).

8. Evaluatio:_ of data and selection of the (4) four most satisfactory configurations,

" 7-1
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9. Plaase IB tests (4 configurations - Z specmlens of each, cryogenic t -_perature).

10. Evalaatien of data and selection o._ the (2) two most satisiacto_, conligurations
lot further testing under cryogenic & high temperatures in Phase II.

7.2 BE.L_D_rXTESTS OF PREPRODUCTION CONTROL SPECIMENS

Fol!owing th_ receipt of (4) f_--" specimens of each configuration (Figures 2-2 and 7-1)

(_., two of these specimev.s were subjected to a static crusia t-qt with use of en Instron

Model TT-C Test Machine (._igure 7-2). One each of these crushed and uncrashed speci-

mens of ,_ach co_:guration were forwarded to NASA-MSC for evaluation and concurrence

with Bendix selectic:, of satisfactory cordigurations.

The specimens were placed between the heads o[ the test machine as shown in Figure

"-2 and tested as per the conditions as outlined in paragraph 7.2.1. The specimens

were .not attached to the heads at either end and no guide tu0es were used to contain the

specimens during the crushing action.

7.2.1 Test Conditions for Preproduction Control Specimen Tests

Test Machine Instron-Modfl TT-C (Ref: Figure 7-2j

C-F Load Cell P,4nge 200-10,00q Pounds

Measaring g, recordin[ accuracy over the
entire leas range ±0.5%

Lozding CoP.'iitions Axially applied load
Uitguided specimen (Ref.: Figure 7-2)
Ambient temperature
Ambient atmospkeric pressure

Head Sr,_-ed ,5 inch/minute

Char" Sp :ed Firrt Crush = i0 incoe,_/minute

Second Crush : i inch/minute

NOTE: The second cx_ash on spechnen SPX-165C2 (Test No. 1) is the only test ran with a

chart speed of 2"/m':nute. All other second crush tests were run at a chart speed of

r'/minutc, (Paragraph 7.2.2).
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Figure7.-I.Crushed an_ Uncrusi_edExamples ofPreproductionControlSpecimens
Inthe FinalizedConfigurations
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7.2.2 Log of Preproduction Control Specimep Testing

TEST1 SPX-165-C-2 F_-_--_

Chart Speed: 10", Min First Crush; 2" rain Second Crush.

Head Speed: 1 2": rain.

Weight: 81.5 grams = .180=,.

Dimensions before Crushing: 3"O.D. x 2-I/8'_I.D. x 6.0" Long.

Condition of Specimen: Foil was bent over on both ends in two, 45 ° quadrants

45: apart.

NOTES ON TEST: Crinkle pattern occurs on outer skin. Specimen crushed from

the top.

Dimensions after Crushing: 3"O.D. x 2-1/6"I.D. x 1-11/'16" Long.

TEST2 SPX-IGC-3
Chart Speed: 10"/rain First Crush: l"/min Second Crush.

Head Speed: 1/2"/rain.

Weight: 81.0 grams : .179_

Dimensions beforeC rushing:2-15:16"O.D.x 2-I,16"I.D.x 6.0"Long.

ConditionofSpecimen: Foilwas bentover on bothends intwo,45° quandrants

45° apart.

NOTES ON TEST: Crinklepatternoccursinouterskin. Specimen crushed from

thetop.

Dimensions afterCrushing: 3"O.D. x 2-I/'16'"_.D,x 1-11,/!6"Long:

TEST 3 SPX-163-C-2

Chart Speed:10"/min FirstCrush; 1"/min SecondCrush.

Head Speed: I/2"/mii.
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! TEST 3 SPX-163-C-2 (Conhnued)
I

Weight: 140.5 grams = .3i_

l Dimensions before Crushing: 6-1,/8" Dian'leter x 6.0" Long.

Condition of Specime,a: Slight dent 2" from one end approxk,aately 1" lon_.

NOTES ON TEST: Foil ires rt'nnxng wrinkles in visible parts of foil. This

is not so apparent on ce.-'.ter ot corrugations.

Specimen crushed from the bottom.

Dimensions after Crushing: 6-l/'8" Diameter x 1-3/8" long.

TEST 4 SPX-163-C-3

Chart Speed: 10' 'min First Crush; i"/min Second Crush.

Head Speed: 1/'2"/rain.

Weig':'. 142.5 grams = .316_

Dimensions before Crushing: 6-i/8" D,ameter x 6.0" I.ong.

Conditions of Specimen: Good.

NOTES ON"TEST: Foil had running wrinkles as in Test 3. Specimen crushed

from top.

Dimensions after Crushing: 6-1//8 '' Diameter x 1-t/8" Long.

TEST5 SPX--164-C-I ____--_'

Chart Speed: 10"/min First Crush; l"/min Second Crush.

Head Speed: 1/2"/rain.

Weight: 108.5 grams = .24#

Dimensiops betore Crushing: 6-3/4"O.D. x 6.0"I.D. x 6.0" Long.

Condition of Specimen: Ends o{ foil slightly laid over- probably due to cutting.

NOTES ON TEST: Poil had rmning wrinkles as in Test 3. Specimen cru_;hed

from the bot_ Jm.
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Dimensio':s after Crushing: CJ-3 4"O.D. x 5-15 lb"I.D, x 1-1 4" Long.

_----qT ,sT6spx-16,,-c-4
CLart Lpeed: 1O".,rain First Crush: 1" rain Second Crush.

Head _¢p'_ed: 1/2"/rain.

Weight: 109.8 grams = .242=

Dimepsions t;efore Crushing: 6-11'16"O.D. x 6-1 16"I.D. × 6,0" Long,

Condition of Specimen: Ends of foi] slightly laid over - probably due to cutting

L 4" long cut in side of outer wrapping parallel to end,

and 1-3, 8" from end.

NOTES ON TEST: Split in outer foil was positioned with split 1-3,'8" from top.

Split became wider just as crush reached area. Specimen

crushed from the top. Specimen buckled in at the bottom

before being fuil_ crushed, wifl, load falling off rapidly.

Test was terminate _ at this point. (POINT C ON RECORD).

J
: Dimensions after Crushing: Diame_, ' top (crushed end) 6-3; 4"O.D., 6.0"I.D.

Diameters at bottom (buckled ena) - 6-3/4"O.D.,

6.0"I.D.

Length after crushing: 1:7/8".

TEST7 SPX-I_.b-B-I _

Chart Speed.: 10"/m_n F_rst Crush; 1", mh_ Sec(md Crush.

H_'ad Speed: 1/2"/rain.

Weight: 105.5 grams = .23._,_

D_men_ions before Crushing: 3-3/32"O.D. x 2.0"IX. x 6.0" Long.

Condition of Specimen: Foil at one end bent over slightly.
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rEST 7 SPX-165-B-1 (Continued)

NOTES ON TEST: Specimen crushed from the bottom.

Dimensions after Crushing: 3-1/8"O.D. x 1-15/16"I.D. x t-ll/16" Long.

TEST 8 SPX-165-B-2

Chart Speed: 10"/rain First Crush; l"/min Second Crush.

Head Speed: l/2"/min.

Weight: 105.2 grams = .232#

Dimensions before Crushing: 3-1/16"O.D. x 2.0"I.D. x 6.0" Long.

Condition of Specimen: Good.

NOTES ON TEST: Specimen crushed from the bottom.

Foil started buckling out at bottom at one side after about

3/4" of stroke and then stopped.

Dimensions afterCrushing: 3-I/8"O.D.x 2'2.D.x I-3/4" Long.

TEST9 SPX-]65-C-5

Chart Speed:10"/tnin.FirstCrush

1"/rain Second Cx".,sh

Head Speed: ]/'2"/rain.

Weight: 95 grams

Dimensions before Crt, shing: 3"O.D., 2"I.D., 6" Long.

Condition of Specimen: Good.

NOTES ON TEST: Specimen crushed uniformly, slight bulging in im,er foil wrzp.

Dimensions after Crushing: 3"O.D., 2' I.D., 1-5/8" Long.
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f.,. ]
TEST 10 SPX-165-C-6 LJ______j

Chart Speed: 10"/'rain. Yirst Crush

I'L min. Second Crush

Weight: 97 grams

Dimensions before Crushing: 3"O.D., 2"I r) 6" Long.

Condition of Specimen: Good.

NOTES ON TEST: Specimen crushed uniformly, excessive bulging of inner foil.

Dimensions after Crushing: 3"O.D., 1-15/16"I.D., 1-5,<'8" Long.

TEST 11 SPX-165-A-1

Chart Speed: 10"/min First Crush; l"/min. Secol-,d Crush.

Head Speed: 1/2"/min.

Weight: 90 grams

Dimensions before Crushing: 3"O.D. x 2"I.D. x 6.0" Long.

Condl,*ion of Specimen: Good.

NOTES (_N TEST:

Dimensions after Crushir4_: 3-1/'16"O.D. x 1-15/16"I.D. x 1-3/8" Long.

TEST 12 SPX-I_5-A-2 ___

Chart Speed: 10"/rain. First Crush; l"/min. Second Crush.

Head Speed: 1/2"/'min.

Weight: 90 grams

Dimensions before Crushing: 3"O.D. x 2"I.D. x 6.0" Long.

Condition of Specimen: Good.

NOTES ON TEST:

Dimensions after Crushing: 3-1/16"O.D. x 1-15/16"I.D. x 1-7/'16" Long.
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TEST 13 SPX-165-B-5

Cbart Speed: 10"/min. First Crush; l"/min. Second Crush.

Head Speed: 1,,/2''/rnin

Weight: 99 grams.

Dimensions before Crushing: 3-1/8"O,D. x 2"I J" x 6" Long.

Condition of Specimen: Good.

NOTES ON TEST:

Dimensions after Crushing: 3-3/'16" O.D. x 2"I.D. x 1-7/16" Long.

TEST 14 SPX-165-B-6 _--_--_

Chart Speed: 10"/min. First Crush; l"/mm. Second Crush.

Head Speed: 1/2"/min,

Weight: 100 grams

Dimensions before Crushing: 3-1/8"O.D. x 2"I.D. x 6" Long,

Condition of Specimen: Good.

NOTES ON TEST:

Dimensions after Crushing: 3-5/32"O.D. x 2"I.D. x 1-7/16" Long.

TEST 15 SPX-165-C-11[°_____

Chart Speed: 10"/rain. First Crush; l"/min. Second Crush.

Head Speed: 1/2"/min.

Weight: 152 grams.

Dimensions before Crushing: 3-1/8"O.D. x 2"I.D. x 6" Long.

Condition of Specimen: Good,

NOTES ON TEST:

Dimeasions after Crushing: 3-3/16"O.D. x 1-7/8"I.D. x 1-3/4" Long.

7-10
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TEST 16 SPX-165-C-12 F(_-_

Chart Speed: 10"'rain.FirstCrush; 1",rain.Second Crush.

Head Speed: 1/2":rain.

Weight: 148.5 grams.

: Oimensions before Crushing: 3-!/8"C .D. x 2"I.D. x 6" Long.

Condition of Specimen: Good.

NOTES ON TEST:

Dimensions after Crushing: 3-1/4"O.D. x 2"I.D. x 1-3/4" Long.

TEST 17 3PX-164-C-7 _____--_

Chart Speed: 10"/rain. First Crush; 1"/rain. Second Crush.

Head Speed: 1/2"/rain.

Weight- 175.5 grams.

Dimensio:,s before Crushing: 6-9/16"O/9. x 5-1/2"I.D. x 6" Long.

Condition of Specimen: Good.

NOTES ON TEST:

Dimensions after Crushing: 6-3/4"O.D. x 5-1/2"I.D. x 1-7/16" Long.

T ST18sPx164-c8
Cl:art Speed: 10", , n. ] irst Crush; 1"/rain. Second Crush.

Head Speed: 1/2"/min.

Weight: 174 grams.

Dimensions before Crushing: 6-9/16"O.D. x 5-l/2"I.D. x 6" Long.

Condihon of Specimen: Good

NOTES ON TEST:

Dimensions after Crushing:. 6-9/16"O.D, x 5-7/16"I.D. x 1-7/18" Long.
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TEST!9 SPX-,63-B-1[_OJ
Chart Speed: 10"/lnin. First Crush; l"/mm. Second Crush

Head Speed: 1,/2 ''/rain.

Weight: 198.6 grams.

Dimensions before Crushing: 6" O.D. x 6" Long.

Cor, dition of Specimen: Good crush from bottom.

NOTES ON TEST: Uniform Crush.

Dimensions alter Crushing: 6" O.D. x 1-1/8" Long.

TEST 20 SPX-163-B-2

Chart Speed: 10"/min. First Crush; l"/min. Second Crush

Head Speed: 1/2"/min.

Weight: 203 grams.

Dimensions before Crushing: 5-15/16" O.D. x 6" Long

Condition of Specimen: Good.

NOTES ON TEST: Uniform Crush

Dimensions after Crushing: 6"O.D. x 1-1/8" Long

rEST 21 SPX-163-A-2 ___L_J

Chart Speed: 10"/rain.FirstCruzW l"/min.Second Crush

Head Speed: I/2"/min.

Weight: 175 grams

Dimensions before Crushing: 5-9/16"O.D. x 6" Long.

Condition of Specimen: Good.

NOTES ON TEST: Sample caved in on side.

Dimensions aff_r Crushing: 5-9/16"OJ3. x 1-1/16" Long.
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'ZEST 22 SPX-163-A-I [__'_%J

Chart Speed: 10"/rain. First Crush; l"/min. Second Crush.

Head Speed: i,, 2"/rain.

Weight: 176.6 grams

]

I Dimensions before Crushing: 5-7/16"O.D. x 6" Lohg.Condition of Specimen: Good.

i
NOTES ON TEST: Good crush.

Dimensions after Crushing: 5-7/16"O.D. x i-i/i6" Long.

TEST 23 SPX,-164-A-I

Char_ Speed: 19"/rain. First Crush; l"/mm. Second Crush.

Head Speed: I/2"/min.

Weight: 159 grams

D_mensions before Crushing: 6.9"O.D. x 5.5"I.D. x 6-3/8" Long.

Condition of Specimen: Good.

NOTES ON TEST: Good crush from bottom.

Dimensions after Crushing: 7"O.D. x 5-I/2"I.D. x I-1/8" Long

TEST 24 :PX-164-A-2

Chart Speed. 10"/min..'?irst Crush; l",'min. Second Crusl,.

Head Speed: I/'2"/min.

Weight: 167.1 grams

Dimenslons before Crushing: 7"O.D. x 5.5"I.D. x 6 25" Long

Condition of Specimen: Good.

NO_ _:S ON TEST:

Dimensions after Crushing: 7-I/8"O.D. x 5-I/2"I.D. x I-I/8" Long.
u
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TFST 25 SPX-_6t-B-I

Chart Speed: 10" ain. First Cru_-i:; l"/mm. Second Crush.

Head _p_-_: 1 ;2"/r, lin.

We_ht: 169.5 _.rams

Dimensions before Cru:_hir4_: 7"O.D. x 5.5"LD. x _' Lor_'.

Conditi_,n of Spcci,,len: Good.

NOTES ON TEST: Ilniform crush.

Dimensions after Crushing: T'O.D. x 5-1;2"I.D. x 1-I: 8" Long.

TEST 26 SPX-164-B-2

Chart Speed: 10" rain. First Crush, l"/m__n. Second Crush.

Head Speed: 1, 2",'rain.

Weight: 164.5 grarns

Dimensions before Crushing: T'O.D. x 5-1, 2"!_. x _' Long

ConditiOh o; Specimen: Flat 1/;2" wide along O_.

NOTES ON TE_T: Good crusb.

Dimensions after Crushing: 7"O.D. x 5-1/2"I.D, x 1-3/16" Long.

TEST 27 SPX-164-C-9

Chart Speed: 10"/rain. First Crush: l"/min. Second Crush.

Head Speed: 1/2"/min.

Weight: _00.8 grams

Dimensions before Crushing: 6-15/16"O.D. x 5-1/2"I.D. x 6-3/8" Long,

Condition of Specimen: Loose foil on I.D. 2 inch 2

NOTES ON TEST: Local buckling on outside of tape. Internal Iailure of g_ue.

Dimensions after Crushing: 7"O.D. x 4-1/2"I.D. x 1-1/4" Long.
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TEST 28 SPX-164-C-10_

Char t Speed: 10" rain, First C_,sh. i" rain. Secow.l Crush

Head Speed: 1 2" i i.

Weight: _82.7 gra_ras

Dimensions before Crashing: 6-3. a"O.D, x 5-1, 2"I.D. x 6-3, It' Lor_g.

Ct:ndition of Specimen: Good.

NOTES ON rEST: Good crush.

-. _.D. x 1-5 16"Lor,g.Dimensions atterCrushiP.g: d-7. 8"'O.D. x 5-i 4"'1

TEST 29 SPX-164-C-11 L___ i

Cbart Speed: 10"'rain. First Crust: 1" min. Second Crush.

Head Speed: 1;2'" min.

Weight: 192.7 grams

: Dimensions before Crushing: 6.858"O.D. 7 5.520"I,.D.x 6.1"Long
i
i

i Condition of Specimen: Good crush top to bf_ttom

l NOTES ON TEST: Uniform crush.

Dimensions after Crushing,: 5.950"0 D. x 4.330"I.D. x 1.376" Long.

.r_ . I
TEST 30 SPX--1a-_-C-12 ____

Chart Speed: 10"/rain. First kTrush; 1", rain. Second Crush.

2 . ram.tIead Speed: 1, ....

Weight: 191.7 grams

Dimensions before Crushing: 6.952"O.D. x 5.523"13.3. x 6.250" Long.

Co_,ditlon of Specimen: Good crush lop to bottom.

NOTE ON I'EST: Uniform ,,rush.

Dimensions after Crush: 6.975"O.D. x 4.975"I.D. x 1.350" Long.
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TEST 31 SPX-164-C-15

Chart Speed: 10"/min. First Crush: l";min. Second Cru_h.

Head Speed: 1",2": min.

Weight: 204 g.-ams

Dimensions before ;_rushing: 7.1875"O.D. x 5.5"I_. x 5.g75" Long.

Condition of Specime:u Good crush top to be:tom.

NOTES ON TEST: Uniform crush.

Dimensions a!ter Crush: 2.1875"O.D. x 5.4375"I.D. x 1.312" Long.

TEST 32 SPX-164-C-16 _d'-_

Chart Speed: 10"/rain.FirstC1ush: 1°':'rain.Second ',=rush.

t to I -
Head Speed: i 2 /ram.

Weight: 210 grams

.!8 O.D. x 5.5"I.D.x 6025" Long.Dimensions beforeCrushing: 7 7"

NOTES ON TEST: Uniform crush.

Dimensions afterCrush: 7.3125"O.D.x 5.25"I.D.x 1.375"I,ong.

7.2.3 Test Records aad Data

The Instror, test records for specimens meeting the specification requirements are found

in Figures 7-3 through 7-5. These records are read from right to left with the first crush

starting, at the extreme right. A key for interpretation of these records may bc found in

Figure 7..6. Tables of the Static Crush Data for all 6 inch length preproduction Control

Specimens is found in Figures 7-7 through 7-10.

NOTE: Other test records for specimens not meetiP4; the specification requirements may

be found in Section II of Addendum No. 1.
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Figu,e "1-4. Static Crush Test Records for _reproduction Control SpeCimens
of the "External Aunular" Configuration (2)

-+

:,+"',,............... v _-_I Ir ........... ,,_ _ _.

1.C)R._1391._P,9-1R_.



-_.[__'-_____+_L i_ ....7 i - +' , ! ! _ I +
_tl! l , i iliiJ " " : I 'I ' I L =*+ 'i '

! _-i , t i;7 : _ . i ,....,,:--.,-_......... , _ - 'r -_,;, ....._,--, --T---_-- _.... 7-

I - , I , _ m i ,

'--_...............- " ......'--' "L-_...... -_-i--;--i\-'r---r

I

__,___ +

f , _ ®, ® L ......., i! , , i

t : ' I

Ili;,
.I

1 ,

Sl_l.-164C- 16

,roi llpecimens

7-19/7-20 - ""

q ,q_4

] 965021582-] 35



I

.............. ]..-::. ..._ : _ . : . _ . - . ..] _.--[.....] .... !]-:.:

--_...... . -, ........ C_\ ..... i ; --- .... _ "_ - r ' " " _i !_--.:"_:--:_-::--: -------.... 7-;-- .-.... ---- ---:---:_-_:.-i_-::

--":-I'_jL _ - & *

---._.,_-_'_..,p'--'__ _ . _'--_ .......... _"v_'"-,-_ .... _ ,_--\ -,, --: ............ =.--:- ....................................... _ .........

,/ !i!i i " ,. ........i_................... __ !............ ___ _--:
- _ .............. i " "_-":-_ ..... i ", t ._i ....... ; " 4-- ..-_--:"

-'_-; "._t:: : ! . _ --. --.,.-_'..77_--.-77 ........ '----_ -_ -. ...... --7----F--. :.'_
" :::_: ; ;,...:"...... _:': _ I . ":.L':"iZ:':'i: --..:" , : ' - l" "": ..:. : " ,:_..__:._:__, ,. _,____ ..... __....... , _ • _.__ - ..=..:;.- _..!_

"t

sPx-l_.-: :_ .-] SPX-I_$B-: ,O, SPX-_$C-2 [-O_--_
---': "-';-- :- " ,._._N_._'_..,-_ ....... ..,.,,.-,_,o_,,_n_,,_.-_.,k_-._= -

............................................ ............. ,_ - ................................ - ..... _--- __ _ ...... .-, _ _'......... ...,..-'_"..._..._._._._-]_
- ; ; !

. ......................._... q-_.----:'_?.L_- ._,_,_,,_............. , -_,.,,.._,.,_."--.... _,-_..,..,,,...:.,_-_-_,:_,.;_ ..... -- .... , - ,_,-,.-,_,-_,..,,__. '-"........ l\ ......................... i_
_" _'---"=_"--'_"-'_"_= - i ..... "_ " " " : _"" ' "_--_-'_ " ' " '-: ..... ";_'--- "--" -........ - ................................................. L ...... ; " , "

...... ..........
._...

: ' " " _........ L -_LL--___:_.:...... : l: : L L__ ..... -t _:::2 !-: i .........._:.......
..... :...... :...... ...... ._. / :_-- - --: -- L_: . " " .

•..- -_: .....:--. --._--_..:-_-_,-._:-_-:-.-!--...............-,--/--_--i-:•-- \ ....._---;.......- , -.,_
.......... -.._ , , . , _._:___....:____,_' ' jL....._.....i.... :__:.............. _ _ ! : I

/J.___....._......L:!LL.....].... _; . - . __=
_Px-_^-______d _Px-,_3B-__ _x-_0_-_

Figure 7-5. StaticCrush Test Records for PreproductionControlSpecimens
ofthe"CircularSolid"Configuration(3)

, m 227-21,.-

1965021582-136



7-23

1965021582-138



'_'-24

1965021582-139



1965021582-140



7-26

1965021582-141



" 1965021582-142



7.3 PHASE IA TESTS ON FULL LENGTH TEST SPECIMENS

7.3.1 Genel al

The recorded data aud other inforn_,ationconcerning the characteristics of interest v,hich

was obtained from testing8specimen_ each of9 configurations(Figure 2-2) under the environ-

mental conditions of room temperature in combination with a vacuum of 3 x i0-1 '[ORR

is described hei'ein. The test procedure utilizedis outlined under Paragraph 6.2 and Figure

6-:.

All specimen types which crushed in the normal manner of progress,ve cell }_uckling,

exhibitedfor both the stat,cand dynamic lo,'Idversus stroke curves, the typical rectangular

shape cl.aracteristicof aluminum honeycomb materials in general. This shape is described

by the sketch of typicalload versus stroke curves as shown by the solid line in Figure

7-11. For some of the Crosscore configurations with the cells at angles of 15 & 30 degrees

",hefluctuationin _-,erage crush load amoum:ed to a maximum oi =Io o while the e_mnded

h-.neycomb in the solidcircular section with 0"_cell orientationwas very smooth with only

',2_ofl,'etuation(Figure 7-11). Loads to :_[tiatecrush ,_ctionunder the firs[impact

(s_eeimens were not pre-crushed) a_eraged approximate]y 20% higher than the avera{4e

crush load, with several being roughly 45°,_higher and only a few exhibitingpe,_ksas much

as 100_ higher. This peak load was usually reached within a time period t,_.001 seconds

or less and ,_,caps,de strokes of less than .I inch.

Some specimm.s which bound up.on the guiCe tubes aftel-_:econdary foldingoccurred.

yielded an expect¢_dincrease in the _,verage crusi_]o_d ns displayed by the upper d,_shed

line in Figure 7-1.1. Others which faile:',catastrophical;,due to shifting,shear fail,,res,

etc.provided a sharp drop o_tfin t,heh_ad a:sshown by the l(_we,'dotted line.
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7.3.2 Phase IA Test Specimen Configurations

Photos of the crushed sFec_mens as well as a Idl] length uncrushed specimen and _ cross

sectional example are showr for the nine _onfigurations in Figure.; 7-12 through 7-20.

The specimen numbering s5 stem (detaiied _,npa_ agraph 6.7) and F_gure 6-2 has been

used in ide_tiI'yin_ the specimens in regard to the impact velocity, tes[ weight and tem-

perature. Some general comments about the data obtained and the condition of the various

specimen configurations as illustrated in these pho[os is included in the Analysis of Test

Results in the next paragraph.

7.3,3 AnalysisofPhase IA Test Results

____i-_Some good datawas obtainedfrom most ofthe specimens althoughseveral

buckledand _uldedar,d one sheared.

_2_'__ Most of tbe specimens yielded some good data although shearing and buckling

led [o erratic failure I atterns on se'¢el'al.

_---_ None of the catastrophic failure p_ terns exhibited by the small annuL.- c_.m'ig-

urations with the 15° or 30': col" ._xe,, were in evidence altho-gh some _v _

indication of buckling instability.

_Some usable data was derived bu[ se_'endarv fo]ding led to bindi_g on thn _ :'/e

tube and it was necessary to cut son,,_ f_r removal.

_--_ Folcling was 1_otqt:ite so predominant as the iar_ _ an,x,flar wJ_b _'- but

crush action was not good enough to warrant further testin_ 3f _:_ c,orhguration

in ,_he succeeding phase of the test program.
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_-J Good uniform cru_,h action oil all except specimen No. 2 at 5 FPS impact

velocity which shewed shearing m the center duri:,_ the latter drops of that series.

._I1specimens of this cozffiguraticn show a slight buckle and/or an uncrushed

_ortion at the centzr due "t_ crushing action usually starting at top, progressing

to center and then continuing from be:tom to center or alternatilg between the

two crushing areas.

_This colffiguration exhibits a mode of failure chara-terized by shearing,folding,

and subscquent buckling. A minimum of usable data was obtained from these

specimens, usually being obtained from the first impact on each specimen.

The sequence of events occurring during this failure pattern is as listed here:

1. A shear piane, of approximately 45 ° with respect to the specimen vertical

axis, develops across the full diameter and results in a section shift. (This

may occur at top, center, or bottom of specimen).

2. The section where shear plane is projected to the fixture wall appears to

bear hard against guide ring in that general area and results in a flatteni,,g

of the cylindrical section: rote a flat plate _ection.

3. The flat plate section then begins to fold and causes fur!her progressive

flattening and folding of the remainir4 c/linder length with very. little load

resistance evident.

Some of the specimens did not de_'elop this catastrophic failure pattern until

after the specm_en had partially crushed in a fairly uniform maimer. Another

photo of this failure pattern is shown in Section X.
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_ tdthough not quite so severe ,.s the solid circular 15 _ configuration this charac-

teristic was still evident.These specimens may be cn the borderline of a cell size,

angle, density, _'elatior_hip which offers the possibility cf a non-u:iform type.

bucklin 6 leadinoo to errat,,c failures. This is oorne ou[ _y JPL report No. 32-639

where it was found that there b: an upper limit on foil thickness/celi size ratio

(t/s = .040) above which a gross shear failure occurred under sta,'ic loading.

The t/s ratio of these specimens is iess but loading rate and mate-ial may also

affect this failure mode.

Other tests conducted by this contractor with capsules of approximately the same

density and having a higher t/s r2tio but with the ceils aligned at 45 ° resulted _n

very satisfac,_ory crushing action.

_This configuration gave the best indications of regular progressive cell buckling,

and uniform crush action. It also provides *he highest specific energy (ft. lbs.,

lb.). The buckled out section i- specimen No. 4-1 is the result of bottoming out

hard and developing a high peak load on the fully crushed specimen in a test where

the energy was not fully absorbed by the end of the planned stroke.

The test data from these specimens _vas obtained in two forms:

The static test records appear in the form of X-Y plots of load versus stroke. The¢;e

records cr n be read i_1a manner similar to that described in the Key ior Static Crush

Data (Instron Records) Figure 7-6. Copies of these records for the first and second crush

application are found in F_gures 7-21 _hrough 7-30 and the other static crush records for

subsequent load applications on Phase IA te_,t specimens is in Addendum No. 1.
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Information from Sese static crush ,'ecords has been incorporated into the varmus data

o]ots subsequently shown throughout Phase I test results.

The dynamic test records appeal in the torm ol osciilograms which were recorded with

use of the oscillograph an0 associated pc,_'er supplies as described under Test Equipment,

Section IH.Typical test _-eeords for the various test conditions have been reproduced in

Figures 7-31 tt_rough %35 and the data from them taoulated in*Figures 7-36 through 7-42.

These particular recorac have been se'ected as illustrative of the type of reaction being

obtained from the various com,gurations. Examples are shown of tests o_ the "internal

aa,iular" eorffi_u-ation with the *hrce ceii axis variations as w.':ll as both the "external

annMar" and "circular solid" configurations with the same cell axis variations.

The records indicate by the specimen numbering system, the vamous conditio;:s under

which the_ were tested.

To make the selection of configurations which woul0 undergo the further evaluati,n_s of

Phase IB and subsequently Phase II the data acquired to this pcjint in the program was

plotted in several ways. These included:

1. Specitie Energy (both static and dynamic) in te.-ms of it. lbs.//lb.

2. Load Onset Rate versus Impact Velocity

3. Load Onset Rate versus Test Weight

4. Rebound versus percentage ol stroke uncrushec,

5. Onset rate versus percentage of stroke uncrushed

*NOTE: Static test _ntormation is also included in this tabulated data.
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These plots and other data from the records and tables, after close study, p_ovided ,ion-

firmatio1_ of the _u'igmal visual observations regarding +hgse co_ffigurations which were

displaying the most satisfactory cruzhiug characteristics. The four co_ffiguratlons

selected for Phase IB tests under the cr)ogemc temperature (-260 F) and the vacuum

uf 3 x 10-1 TORR were as follows:

_'_- _'_i SPX-168B - Internal Annular - 30" cell axis

i 1 _ 0 °___J SPX-168C - Internal Annular cell axis

C___ SPX-167C - ExternalAnnular- 0 _ cell axis

[O ' _ SPX-166C - Circular Solid - 3" cell axis

The data considered of most interest is presented in the graph. _ and tables Figures 7-43
M,O

througll 7- 53.

Figure 7-43 is a plot of the density versus stroke ;or the various col_igurations. You

will note there is, as expected, a general linear relationship of i,.,creased stroke with

decrease m density. The solid circular section. 15 cell axis configuration shows the

highest stroke percent but there is not a large percemage difference between those at

the upper end of the curve.

Specific energy in terms of ft.lbs.,'ib, is probably ene of the more important factors to be

considered for design. Figure 7-44 provides a summal"y of these values. In _ tgu.'e

7-45 both the static and dynamic results are plotted versus density, with the heavy lines

running more or less on the vertical axis indicating the soliO circular, external a,mular

and internal annular when re_ding from left to right. Note the separation of 0" oriented

cell axis lines(which run roughly horizontal across the grapt_, beeau_,e of a cell shape

difference. The 0 ° orieated cell in the solid circular coilfiguration is most efiicient by
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a good margin. A ,_omewhat lesser ener_ absorgtion capability is shc.wn for the dynamic

values as compared to the static v_.lues. This result, which was unexpected has been both

supported and disputed by other tests which were run under atn:ospberic pressure where

the cellular entrapped air would have an effect. Eigure 7-45A s]._'_vs a second plot of

data regarding the specific energy where comparison is made betwe m specimens tested

at 5 and 10 fps impact velocity. This plot denotes significapt changes aue to temperature

but little effect due to the 5 fps cha_.ge in impact velocity, "-hich '.s further confirmed by

the tabular d_ta shown in Figure 7-46.

The load onset rate obtained 3ader the first impact on a full '.ength specimen (in terms

of g's/sec.) when plotted against the impact velocity with a constant mass of 1920 pounds,

provides three broad bands for the three cross sechonal configurations with the lower end

at 1500 to 2000 and the upper end varying from 3000 to 5500. In e_ch c3se as shown in

: Figure 7-47, the O° cell defines the upper edge of the band but the 15 ° and 20" cell con-

. _ figurations shift. Plotting of the load onset rate versus the weight of the impacting rig

mass as shown in Figure 7-48 where the impact velocity renmined constant at 1_ ft./see.

provides _.wo more bands with the 15° and 30 ° cell axis configurations forming jusi one

set of curves. These configurations exhibit a moderately declining slope in the area of

: 2500 to 4090 after _apidl] dropping fror_ the value attained with the 760 pound Weight.

The 0° cell coniigurations show a somewhat steeper slope in the same areR of 2000 to

4000 and roughly the same at the upper and lower ends.

Figures 7-47A and 7-_7B illustrate the variations which are evident in c_mparing the

load onset rate versus impact velocity at the aecond and third impacts or- the same speci-
I

men. Interpolating the data by drawing approxhnating curves through the several points
I
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for thetwo configurationssubsequentlydetermined inPhase IIto be cfprinceinterest

(_ _nd _ )indicates,when comparison ismade wlththefirstor initialimpact

as shown inFigure 7-47,a lesservalueforbuththe second _nd thirdimpacts withthe

seconddroppingoffmore thanthe third.

Figures 7-48_ and 7-48B show the changss which o.:cur in comparison of the load onset

rate versus impact weight under the second and third impacts on the same specimen.

Again, approximation of a curve through the several points for the ext_..rnal aunular _.nd

solid circular configurations with 0 ° cells, reveals in a comparison with the first impact

as shown in Figure 7-48 a lower v_lue for both th'e second and third impacts. In this

case, however, the curves for the second and third impacts for each configuration are

very close together.

Figure 7-49 indicate_ a characteristic shape displayed by the various configuration.q when

load-onset rate and rebound are plotted versus the percent of capsule stroke uncrushed.

The onset rate shows a roughly linear decline for all types with not must slope in the line.

,r
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" C,>utrary to what was e::pectt-_J, however, tyf_ rek_u:_d incre_'s,_as th_ uncm:she_l portion

of the cap.-;ule bc4:_m-J._sshor_.er. It t_ad ::_e= predicted tha:. tile r_bound would be prlmarily - -

-a fu_*_ion of _e e!a_c 9_ ::ncrushed porti:_n o._ the ca_su_e'hut ,_.,_I_:et_md cprves" (thC_gh

:i._ sho_.ing the same- elopes', r:xnibit this it.crease, irrdicating an apparently Ltrger effem -.

_t ¢*; . • [.: b-_.tim c:._shed or v-a_.ca:l, defucmed section: The 0 • cells o1-_e highest _1=eng-_h gen-

eral!y skcr,v the lareest reb_.a;,d excep_ L_ isolazed zases o'. cat---s_ophLc spes'imen (allure

- at_d "ho_e with the 30 cell a_x=..qusually provide more reixm,',d Lhay, the !5 type.

iI; :'_:a._ to spt'in_ rates..'.he values l_,r Iull length specin_ens span the range fron]

app:-'6xima_:.iy 75.000 down to "_,2.e00 !bs. in. as the capsule le_h decreases, rhe high

c_mh strength 0: cel._ capsules in the "intez'nai annular" cordigv--ra_ion, and t,*tr low crush

stre_t_ _0 ceti in Lhe external armular confi_aration define the upper aad lox_er edges

c_f*.he broad band describ,_.xi in Figure 7--_0 which cowr¢ all eon_i_ra_.ions.

An indication of the repeatabili_" of average crash load for a group of specimens _f the

same or simylar configurations cat', be seen i:,. Figure 7-51. Th:s data was plotted ":rom

the ave.rage crush .,o,ds of on6 sar, ples cut from each of t2nefu!l length test specimens

in Phase I a::d is compared with _he target crush l¢,ad as spezified (5,500 lbs.).

Typical exc.mnles of the type of load versus =ime and load verz:t_ stroke p2ots which are

provided through analysis of the osci!lograph records taken during the dynamic tests are

shown i,a Figures 7-52 and 7-53. Figure 7-52 is taker, from ore ,.f the tests on a "circular

solia" co:ffiguration with 0: cell axis and il]:_strates a uniform type o[ progressive crush

action. Figure 7-53 is taken from _ test on an "external annular" configuration with 15 '

cell and illustrate_ how the load gradually increases to an excessive value when a speci-

men such as this develops a secondary folding action resulting in an eventual binding action

on the guide tube.
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Other examples of loan versus stroke plots may be seen in the Phase IB a,_d Phase II

Tests Results.

7.4 PHASE IB TESTS ON FULL LENGTH Tli,ST SPECT_MENS

7.4.1 General

Conclusion of Phase IA tests as previously pninted out in paragraph 7.3 resulted in the

selection of the four configuration,., exhibiting the most satisfactory characteristms.

Those co_igurations selected are listed under paragraph 7.4.2

Two specimens of each configuration were subjected to the test conditions as outlined in

Section Yi and Figure 6-1 and included static testing of one specimen and dynamic testing

of the second; both under cryogenic temperature.

7.4.2 Phas_ IB Test Specimen Confi_urati,ms

SPX-158B - InternalAnnular - 30° cellaxLs

SPX-168C - InterlialAnnular - 0° cellaxis

SPX-167C - ExternalAnnulaJ- 0° cellaxis

SPX-166C -CircularSolid - 0° ceilaxis

Photosofthe crushed specimens as we]ias a fulllengthuncruslledspecimen and a cross-

sectionalexample are shown forthe aI_ve configurationsin Figures 7-53A through7-56.

The specimen numbe,-ingsystem (detailedinparagraph 6.7and Figure 6-2)has been used

inidentifyingthespecimens in regaz'dtothe impact velocity,testweightand temperature.

General comments regardingthe i,,'Lforma_ono0taiwedand dataplottedisincluded_nthe

AnalysisofTest Resultsinpara[_raph7.4.3.
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_,4_

TYPE SP×-I_gS- '_-_

Figure 7-53A. piotorial Summary of Specimens (_) Tested in Phase IB
For Num_3r Identific'ation With Test Conditions, See Figure 6-_
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r

TYPE SPX-168-C

•., Figure 7- 54. Pictorial Summary of Specimens ( _O-_ ) Tested in Phase IB
Fo:' Number ldentffi,'ation With Test Conditions, See Figure 6-2
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Figure 7-_5. Pictorial Sumrc_ry of Specimens ( _ ) Tested in Phase IB
For ]_umbe_"Identilicati,.,n With Test Conditions, Seo, Figure 6-2
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For Number identification Wi.th Test Condit)ons, See Figure 6-_.
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7.4.:_ Analysis c_f Pha_e iB Test Results

The test data was acclui_-ed in :he same manner as clesc-._bed in Phane IA with both static

and dynamic results ,_f the tests being recorded. Figures 7--5" through 7-60 sims': the

static crush loads obtained and Figures 7-61 and 7-62 are typical examples of the dy.namic

test results obtained at -250°F. The data reduced from the records is tabulated in

Figure 7-63.

Certain data was plotted from the various test records t,: assist in determining fl_e two

configurations which were to 0e u_ ed fox "he final Phase H evaluatic, n under the full range

of temperatures.

Some of this data, "although plotted before the ini:.:,ation of the Phase II program is included

in that section (VIII) where comparison is made over the full range of the (4) temperatures.

o°tudy of these plot, s and the tabular data from Phase IB (Figure 7-63) resulted in tl-.e

selection of the two configur:Vi,_,s Lsted for .use in Phase 12.

7--_ --'--_
_J St-X- 167C - Exter,_al Annular - 0 ° cell axis

!

"1 '_'__] SPX-16_C - Circular Solid - 0 ° ceil axis

I

i
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SECTION Vff[

PHASE ;7 TESTS

8.1 GENERAL

Phase II of the project was initiated immediately upon the successful conclusion of the

Phase I B test program which had resulted in selection of the two configuratioL

_>:hibiti_lg the most satisfactory combination of performance characteristics. The first

step following the selectiop of tbese two configurations as identified in paragraph 8.2,

invotved procurement of a quantity of each configuration for testing under the varied

enviro_meltal conditior,s. T_t conditions inch,ded both static and dynamic loadings

with variations ql impact velocities and test weights, and with the further added tem-

peratare variations of +300°F, _-150°F, -l_9'_F and -260°F in combination with the

vacuum of 3 x 10-1 TORR. Section VI and Figure 6-1 are again referred to for Test

Procedures.

8.2 PHASE 1I - TEST SPECIMEN CONFIGURATIONS

SPX-167C - External Annular - 0 ° Cell Axis

_W--] S$'X-166C - Circular Solid - 0 _ Ceil Axis

Thirty-one specimeas of each of the above configurations were evaluated under the

several environmLntal conditions. Photos of these crushed sFecimens as well as a

full len_b ,_ ,'rushed specimen and a cross sectional example are shown for these con-

flwarations in Figures 8-1 thru 8-8. The specimen numbering system (detailed in

paragraph 6.7 and Figure 6-2) has been used in identifying the specimens regarding the
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impact velocities, test weights, and temperatures. General comments regarding the

information obtained and data plotted is included in the Analysis of Test Results in

paragraph 8.3.

8.3 ANALYSLS OF PHASE II TEST RESULTS

The recorded data from Phase U specimens included (as did the Phase IA and Phase IB

sections of the program) both static and dynamic records. Phase H specimens however

were tested under the v2.rious high and low temperature environments. Figures 8-£

_ru 8-14 illustrate the static crush loads obtained at the various tempe1 atures of

+300°F, +150°F and -150°F. The static crush record for these confi:;urati6ns under

7-_ and 7-60. Typical examples of the dynamic test..260°F n_ay be seen in Figures _

results obtained undex these variations in temperature are illustrated as fctlcws:

-250°F . ............. Figures 8-15 and 8-16

-150 ° and +I_0°F ......... Figures 8-17 and 8-18

+300°F . ............. Figures 8-19 and 8-20

The data which was reduced from both static and dynamic records is tabulated at the end

of this section. A portion of this data has been plotted as described below.

1. Figures 8-21 and 8-22 illustrate the variations in load onset rate, rebound

and average crush load which occ,:r on the two configurations as multiph.

5 FPS impacts are made on the test s_e'imens under a temperature of

+300°F. As noted the plot is made agairs _ [he cercent of uncrushed strok,:

remaining at the time of impact.
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o. Figures 8-23 and 8-24 provide a zompar-Lson: same parameters as noted

in (1) above, with Figure 8-22 over the temperature rarlt,.e of +I5O_F,

-150°F and +300°F for the same configuration (iO , 7 I.

3. In Fi_ure 8-25 a ,]af is provided to indicate how the rebound varies during

subsequen _ 5 F:'S _ppacts onaparhcu]ay configuration (_--_-I), as a result

of being expose._ to differem :emperatures during testing,

4. Fig-_res 8-26 thru 8-39 ar_ dynami_ load vs. sLroke plot_ of the two con-

figurations under the various temperature conditions with figures 8-26

thru 8-32 being the plots for configuration ([_i_J) and 8-33 thru 8-39

being pints for configuration (_-J).

(
Figures 8-26 and 8-27 Comparison of -2C0°F with +300°F

Figures 8-27 th,',._ 8-32 Comp_.rison of various impact
velocities and test weights at
+300°F

Configuration (_-_)

Figures 8-33 thru 8-36 Comrarison of va_ ious impact
velocities and test weights at
_26_°F

Figures 8-33 and 8-37 Comparison of various temperatures
thru 8-39 (-260°F, -150°F, + 150°F and

+3fl0"F) at same impact velocity
(1(FPS) "-_ndsame _est weight

( t,920 Ibs.)

5. Fib?ares 8-40 and 8-41 have been provided to iliustrate the effect of impact

velocities and t( 3t weights on the average crush load under th ,_ several

temperature conditions. It will be noted that the soread in the ave,, age

crush load is oaly the normal expected eer a group of specimens under a
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particular temperature. Those with very high loads should be judged

on the basis of experiencing an um, sual type of or, shing action with t,md-

in,_., etc. Although the maximum changes in average crush load are hi_her,

the average of these changes with temperature has been estimated from

these points as listed hm-e.

+300 .......... down approximately 2'7_[
F..=_ 1,

[______L.J-260 .......... up approximately 17"';

+300 .......... down apt)roximately 22'<_

-. ,,u .......... t,p approxiinately 11_:[:

The differences in percent:ges between the two configurations are very

likely due to _he different adhesives used.

6. Figlares 8-42 and 8-43 are presented to show the temperature effect on

the load onset rate when plotted against the various ,mpact velocities and

test weights. A general decline with increase in temperature is evident in

I Figure 8-42 although the -150°F temperature for the solid circular con-

figuration and the + 150°F temperature for the external annular do not

quite fit this pattern. The same comment holds true for F_gure 8-43 where

the plot is against test weight, however all do fall within a broad band.

Here also several room temperature points are indicated which fall in

the approximate center of the band.

7. Fi_o'ures 8-44 thru 8-49 illustrate the effect on spring rate (load per per

ur,it deflection) under temperatures of -150°F, -_150°F and +300°F. Four

loadings are listed for each specimen with the total stroke (specimen length
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crushed following the spring rate readings) shown under each _y'oup :,f

deflection vs. load figures. For the effect of the -260°F temperature

Figure 8-50 is refeienced, where the change in spring rate with total

specimen length is plotted.

All other data reduced from the various test recoras may be found in the Tabu "lar

Test Data Summaries found in Figures 8-5i thru 8-56.

NOTE: Specimen No. SPX-166C41 (Test Weigh_ 3,750 pounds, impact

Velocity 10 FPS, Temper_' :re +300°F) was not tested due to

probability of damage to test fixture. This decision was made on

the basis of observing Specimen No. SPX-166C33 which crushed

under a lower temperature (+150°F) with only the static test weight

applied.
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spx-lG7-c18
Deflection (in.) Load (Lbs.) Temperature (°F)

0 840 -150_F
.007 1000 -150°F
.019 1500 -150°F
.029 2000 -150°F
.037 2500 -150_F
.048 3000 -150°F
.055 3500 --150°F
.064 4000 -150°F

First Loading (Total Stroke = 4 In.)

0 840 -150°F
0 1000 -150_F

.003 1500 -150°F

.012 2000 -150°F
.021 2500 -150_F
.029 3000 -150°F
.034 3500 -150°F
.042 4000 -150°F

Second Loading (Total Stroke = 6 In.)
I.

0 840 -I!,0°F
0 1000 ..l!i0°F

.004 1500 -l_0°F

.030 2000 -!50°F

.052 2500 -:50°F

.068 3000 -150°F

.080 3500 -150°F

.095 4000 -I_0°F

Third Loading (Total Stroke = 10 In.)

0 1400 -150_F
.020 2000 -150°F
.075 2500 -150_F
.120 3000 -150°F
.150 3500 -150_P '
.182 4000 -15001 .

Fourth Loading (Total Stroke = 10In.)

Figure 8-44. SpringRate ofExternalAnnular Configurationat -150°F
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spx-167-c26£ -71

Deflection(In.) Load (Lbs.) Temperature (°F)

0 460 +150°F
.015 1000 +150°F
.023 1500 +150°F
.030 2000 +150°F
.038 2500 +150°F
.C45 3000 +I50°F
,055 3500 +150°F
.065 4000 +150°F

First Loading (Total Stroke = 4 In.)

0 525 _150°F
.015 i000 +150°F
.035 1500 +150°F
.045 2000 +150°F
.055 2500 +150°F
•066 3000 +150°F
.075 3500 +150°F
.084 4000 +IS0°F

Second Loading (TotalStroke= 6 In.)

0 430 +I50°F
.034 I000 +I50°F
.055 1500 +150°F
.075 2000 +150°F
.100 2500 +150°F
.118 3000 +150°F
1_n 3500 +150°F

| ._vv

•144 4000 +I50°F

Third Loading(TotalStroke= I0 In.)

0 210 +I50°F
.060 I000 +I50°F
.095 1500 ,150°F
A24 2000 +I50°F
.I55 2500 +150°F
.1.76 3000 +150°F
.200 3500 +150°F
•220 4000 +I50°F

Fourth I_ading (Total Stroke = 10 In.)

Figure 8-45. Spring Rate of External An_ular Confis_ration at +lS0°F
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SFX_ 167_C34 iO_O____ - -_

Deflection (In.) Load (Lbs.) Temperature (°F)

0 480 +300°F
.008 1000 +300°F
.015 1500 +300°F
.025 2000 +300°F
.035 2500 +300°F

First Load (Total Stroke = 4 In.)

" 0 380 4300°F
.020 1000 +300°F
.035 1500 +300°F
.050 2000 +300 °
.070 2500 +300°F

Second Loading (Total Stroke = 6 In.)

,, 250 +300°F
1000 +300°F

.065 1500 +300°F

.095 2000 +300°F
: .120 2500 +300°F

1
Third Loading (Total Stroke = 10 In.)

Figure 8-46. Spring Rate of External Annular Configuration at +306°F

t
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sPx-18B-claie .........

Deflection (In.) Load (Lbs.) Temperature (°F)

0 600 -150°F
.0i 1 iC60 -150*F
.016 150C -150_F
.024 20C6 -150°F
.(" 0 2_o0 -150_F
.040 3000 -150°F
•350 3500 -" 5O°F
_,_.';b 4000 - 150°F

Fiz ;t L_diPg (Total Stroke = 4 In_)

0 560 -150°F
.011 IIJO0 -150=F
.020 1500 -150°F
.026 2000 -150OF
.036 2500 -150°F
.043 3000 -150_F
.050 3500 -150°F
.058 4000 -150°F

Second Loading (Total Stroke = 6 In.)

0 560 -150°F
.028 1000 -150°F
.043 1500 -150°F
.065 2000 -150°F
.078 2500 -150°F
•092 3000 -150°F
.105 3500 -150°F

' .110 4000 -150°F

Third Loading (Total Stroke = 10 In.)

0 760 -150°F
.020 1000 -150°F
.055 1500 -150°F
.080 2000 -150°F
.105 2500 -1500F
.125 3000 -150°F
.137 3500 -150°F
•144 4000 -150°F

Fourth Loading (Total StroKe = '.0 In.)

Figure 8-47. Spring r_te of Circular Solid Configuration at -150°F
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D_,_ction (!_._ Load (I_k_s.) Temperature (=F)

9 380 +I50_F
.015 1000 +150_F
.029 1500 +150°F
.035 2000 _150°F
.049 2500 +I50°F
.062 3000 +I50°F
.079 3500 +150°F
.170 4000 +IS0°F

First !oading(TotalStroke = 4In.)

0 510 +I50_F
.010 1000 +150_F
.025 1500 +I50°F
.040 2000 +15d°F
.048 2500 +I50°F
.059 3000 +150°F
.071 3500 +IS0°F
.C82 4000 +150°F

Second Loading(TotalStroke = 6 In./

0 520 +150_F
.019 1000 +150°F
,040 1500 +150°F
.063 2000 +150°F
.078 2509 +150=F
.095 3000 +I50°F
.115 3500 +I50°F
.120 4000 +150°F

Third L_ading (Total St_oke = I0 In.)

0 480 +150°F
.035 1000 +150°F
.070 1500 +150°F
.098 2000 +150°F
.120 2500 +150°F
.140 3000 +150°F
.160 3500 _150°F
.180 4000 +150°F

Fourth Loading (Total Stroke = 10 In.)

Figure 8-48. Spring Rate _ Circular Solid Co_i6mration at +150°F
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SPX-166-C34 iO ' i

D_f'_ction (In.) I_x_d (I.J_s.) Temperature (_F)

0 520 +300_
.01_ 1000 +300°F
.017 1500 +300°F
.030 20C0 +300°F
.055 2500 +3CO°F
.070 3000 +300°F

FirstLoading(TotalStroke= 4In.)

0 520 +300°F
.069 1000 +300°F
.020 1500 +300°F
.035 2000 +300°F
.055 2500 +300°F
.070 3000 +309°F

Second Loading(TotalStroke= 6In.)

0 520 +300°F
.015 1000 +300°F
.026 i500 +300°F
.047 2000 +300°F
.075 2500 +300°F
.095 3090 +300°F
.130 3500 +300°F

Third Loading(TotalStroke= 10 In._

Figure 8-49. SpringRate ofCircularSolidConfigurationat+300°F
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SECTION IX

SUMMARY

The basic objective of this research effort was to obtain _,uantitative de3ign data con-

cerning the characteristics of selected materials when used in high (L"D) ratio crushable

energy absorbing capsules. This effort has resulted in the accumulation of a substantial

amount of information and data _vhich will be useful to the designers of shock attenuators

for use in the space enwronment.

Optimized combinations of the desir=g characteristics such as specific energy, load on-

set rate, and reboura:! as define6 ,nder theObjective (parag_'aph 1.2)were embod,ed in the

two configurations tested in Phase II. The external annular _ and particularly the

solid circular _ (eack with 0 ¢ cel', axis) configurations give ample visual evidonce

ol their satisfactory crushing chaz_cteristics when compared with typical examples of

the other configurations in Figures 9-I., 9-2, and 9-3.

The solid circular sectioa with the 0 ° cell axis _ , which is fabricated with an ex-

panded hexagonal ca]l, provides a regular cell bucking action whici_ results in a very

flat average crush load with a minimum o[ fluctuation. Specific energy is also highest

ior this configuration although it does not have quite the thicl_,,c-_s efficiency (crush stroke

_.nterms of total capsule length) ol the solid circular section with the 15 "_cell _xis.

Specific ene;'gy values, measured during dynamic and static load applications, exhibit ver_,

small variation under these test conditions in which the specimeus were tested in a vacuum,

, 9-1
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!
,_ Rebound, which is of particular interest to the designer, was not large for any of the spec-

_.. imens. A rebound distance of .56 inch was the maximum recorded. Most specimens did

not exceed .25 inch rcbound. However, subsequent i.upacts on partially crush__d capsules

display an increase in the rebound value as the cl,_she¢; length of the capsule increases.

Variation of the average crush loads under the extreme temperatares is greater than

expected at the initiatiDn of the program. These n. ximum values variea from room

temperature test readings; being 30'_ higher ;.gr -260°F and 35c_ low_.r ¢or the +300°F

tests.

For a more thorough analysis of the data obtained, reference is made to Sections VII &

VHI. Additional discussion may be found in the Conclusions and Recommendations (Sec-

tion X), Addendmn No. 1 containing the specimen suppliers Final Materials Report, Adden-

dum No. II containing additional tent records, and the Monthly Progress Reports as listed

in the References, (Section XI).
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SECTION X

CONCLUSIONS AND RECOMMENDATIONS

I0.I CCNCLUSIONS

A broader and more advanced understanding of the many variables involved in the design

ol crushable aluminum structures for energy absorption is one of the important results of

thisp.oj,ect.Also,the "state-of-the-art" in the design, fabrication,and testingof energy

absorbing capsules has been significantlyadvanced through the study of these various speci-

men configurations. These capsules were fabricated only after vigorous develop-

ment ef]ortsof the specimen supplier (Hexcel), monitored by BendLx Products

Aerosp_.ce Division, fellshort of the original goal. Nego'iations were then conduc-

ted with NASA-MSC to adjust the requirements as outlinedl, .hespecifications.The minor

i revisions involved stillpermitted the attainment of the basic obiectives of the program

and did not detract inany great degree from the inform,_ion to be obtained. Completion

of the testprogram with itsstringent -'equire:ne,tshas provided a valuable source of

data regarding crushable aluminum structures in a space environmep.t. From this data,

the following conclusions have been drawn.

t0.1.1 The severe temperature extremes of t_e space environment have a substantial

effecton the crush characteristics of capsules constructed of the materials used in

thisprogram.

_' 10-1
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10.1.2 Only minor di[fercnces in the dynamic and static specific energy v_lues are

evident when the specimens are tested under a medium vacuum environmen:.

10.1.3 Minimum rebound is obtained with crushable structures of Lhese co:digurations.

The rebound values increase as capsule length decreases.

10.1.4 Splicing short sections together to obtain a long capsule should be avoided due to

the inherent buck!ing tendency at the spbce, although this technique was successfally used

on one configuration.

10.1.5 Annular type capsulea crush more satisfactorily when using a vertieal!y oriented

cell. Capsules with angular cell orientation are prone to a secondary folding and bucking pat-

tern, which is somewhat relieved as the ratio of wall thickness to diameter (D/t) is reduced.

10.1.6 'fi,c solid circular configurations of low density with _e 15° or 30° cell axes :.re

to be a-.'.:__deoby the des_gaer since they are subject tc random shear failures as i]lus-

ttated in Figure 10-1. This failure mode subsequently results in the capsule buckling and

folding witb a severe drop off in crush load c_pacity.

I0.1.7 The solid circular configuration with the 0 ° cell axis,which was fabricated with an

expanded hexagonal cell, displayed the optimum eombinatior, of crush characteristics.

A typical example el this is seen in Figure 10-2,where th_ smooth regular cell buckling

pattern is readily evident.

10.2 RECOMMENDATIONS

Recommendations arising from observation of the tests and study of the information ob-

tained therefrom include the followi_g:
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10.2.1 Although the solid circular confi_aration with tt:e 0° cell axis utilizing, two

sechons bonded together to form a long capsule produced satisfactory results, it is recom-

mended that the inherent problems of such a aesign be surmounted througb development of

fabmcating and processing equipment which would permit the capsule to be made in one

full length section.

10.2.2 As previously notedin this document, the program originally was conceived with

tile thought oi using 2024 aluminum alloy. Alloy 5056was settled upon as a compromise.

Continued develgpment of the higher _cmperature capability 2L324foil in thicknesses and

widths which will permit the fabrication of capsules similar in size to those used in this

program is recommended. __

10.2.3 The catastrophic failure pattern of the solid circular configuration with the 15 _

or 30 ° eel] axis,whxch was initiated with a shearing action and resulted in buckling and

folding of t,e specimens, requires further investigatio._. /_ ' failure mechanism"

analysts and confirming test program to establish methods of avoiding this _ype of failure

is recommended.

10.2.4 The full range of environmental conditions to which a crushable energy absorbing

capsule may be exposed has not been completely investigated. ,_n extension of this test

program, which would involve the exposure o,_ the -ecimens to a temperature cycling

_,,,.flition betwe(n high and low limits in combination with a much harder v,°,cuum, is

recommend_'d. Important areas for further study would also include other materials and

cell shapes.
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Figure I0-i. Typical Shear Failure Pattern Produ_.ed Under Both

Staticand Dynamic Load Appl}cations on Circular Solid,15° Cell Axis Configuration
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